Project

Profile

Help

Support #4935 » 429_2020_2069.xml

Arun Pradeepan Balasubramanian, 2021-03-12 14:19

 
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Article PUBLIC "-//Springer-Verlag//DTD A++ V2.4//EN" "http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd">
<Article ID="s00406-020-01128-9" OutputMedium="All">
<ArticleInfo ArticleType="OriginalPaper" ContainsESM="No" NumberingStyle="Unnumbered" TocLevels="0" OutputMedium="All" Language="En">
<ArticleID>1128</ArticleID>
<ArticleDOI>10.1007/s00406-020-01128-9</ArticleDOI>
<ArticleSequenceNumber>0</ArticleSequenceNumber>
<ArticleTitle Language="En" OutputMedium="All">Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus</ArticleTitle>
<ArticleCategory>Original Paper</ArticleCategory>
<ArticleFirstPage>1</ArticleFirstPage>
<ArticleLastPage>1</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
</RegistrationDate>
<Received>
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
</Received>
<Accepted>
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
</Accepted>
<OnlineDate>
<Year>
<?InsertOnReleaseOF OFYear?>
</Year>
<Month>
<?InsertOnReleaseOF OFMonth?>
</Month>
<Day>
<?InsertOnReleaseOF OFDay?>
</Day>
</OnlineDate>
</ArticleHistory>
<ArticleFundingInformation>
<Fund>
<FunderName>Zhejiang Provincial Medical Technology Project</FunderName>
<GrantNumber Type="FundRef" GrantRecipient="Au3">2015KYB351</GrantNumber>
<GrantNumber Type="FundRef" GrantRecipient="Au3">2019KY628</GrantNumber>
</Fund>
<Fund>
<FunderName FundRefID="http://dx.doi.org/10.13039/100007834">Natural Science Foundation of Ningbo</FunderName>
<GrantNumber Type="FundRef" GrantRecipient="Au3">2013A610249</GrantNumber>
<GrantNumber Type="FundRef" GrantRecipient="Au3">2015A610196</GrantNumber>
</Fund>
<Fund>
<FunderName>Life and Health Technology Innovation Team Fund of Ningbo</FunderName>
<GrantNumber Type="FundRef" GrantRecipient="Au3">2015C110026</GrantNumber>
</Fund>
<Fund>
<FunderName>Ningbo Health Branding Subject Fund</FunderName>
<GrantNumber Type="FundRef" GrantRecipient="Au3">PPXK2018-08</GrantNumber>
</Fund>
</ArticleFundingInformation>
<ArticleCopyright>
<CopyrightHolderName>Springer-Verlag GmbH Germany, part of Springer Nature</CopyrightHolderName>
<CopyrightYear>2020</CopyrightYear>
</ArticleCopyright>
<ArticleContext>
<JournalID>406</JournalID>
<VolumeIDStart>
<?InsertByIssueBuilding VolumeIDStart?>
</VolumeIDStart>
<VolumeIDEnd>
<?InsertByIssueBuilding VolumeIDEnd?>
</VolumeIDEnd>
<IssueIDStart>
<?InsertByIssueBuilding IssueIDStart?>
</IssueIDStart>
<IssueIDEnd>
<?InsertByIssueBuilding IssueIDEnd?>
</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author ID="Au1" AffiliationIDS="Aff1 Aff2">
<AuthorName>
<GivenName>Elena</GivenName>
<FamilyName>Roman</FamilyName>
</AuthorName>
</Author>
<Author ID="Au2" AffiliationIDS="Aff1">
<AuthorName>
<GivenName>Joshua</GivenName>
<FamilyName>Weininger</FamilyName>
</AuthorName>
</Author>
<Author ID="Au3" AffiliationIDS="Aff1 Aff3">
<AuthorName>
<GivenName>Basil</GivenName>
<FamilyName>Lim</FamilyName>
</AuthorName>
</Author>
<Author ID="Au4" AffiliationIDS="Aff1">
<AuthorName>
<GivenName>Marin</GivenName>
<FamilyName>Roman</FamilyName>
</AuthorName>
</Author>
<Author ID="Au5" AffiliationIDS="Aff4">
<AuthorName>
<GivenName>Denis</GivenName>
<FamilyName>Barry</FamilyName>
</AuthorName>
</Author>
<Author ID="Au6" AffiliationIDS="Aff4">
<AuthorName>
<GivenName>Paul</GivenName>
<FamilyName>Tierney</FamilyName>
</AuthorName>
</Author>
<Author ID="Au7" AffiliationIDS="Aff1 Aff2">
<AuthorName>
<GivenName>Erik</GivenName>
<FamilyName>O’Hanlon</FamilyName>
</AuthorName>
</Author>
<Author ID="Au8" AffiliationIDS="Aff5">
<AuthorName>
<GivenName>Kirk</GivenName>
<FamilyName>Levins</FamilyName>
</AuthorName>
</Author>
<Author ID="Au9" AffiliationIDS="Aff1">
<AuthorName>
<GivenName>Veronica</GivenName>
<FamilyName>O’Keane</FamilyName>
</AuthorName>
</Author>
<Author ID="Au10" AffiliationIDS="Aff1">
<AuthorName>
<GivenName>Darren</GivenName>
<FamilyName>Roddy</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Department of Psychiatry, Trinity College Institute of Neuroscience</OrgDivision>
<OrgName>Trinity College Dublin</OrgName>
<OrgAddress>
<City>Dublin 2</City>
<Country Code="IE">Ireland</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Department of Psychiatry, Education and Research Centre , Royal College of Surgeons in Ireland</OrgDivision>
<OrgName>Beaumont Hospital</OrgName>
<OrgAddress>
<City>Dublin 9</City>
<Country Code="IE">Ireland</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgDivision>Department of Game Design</OrgDivision>
<OrgName>Technological University Dublin</OrgName>
<OrgAddress>
<City>Dublin 2</City>
<Country Code="IE">Ireland</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff4">
<OrgDivision>Anatomy Department, Trinity Biomedical Sciences Institute</OrgDivision>
<OrgName>Trinity College Dublin</OrgName>
<OrgAddress>
<City>Dublin 2</City>
<Country Code="IE">Ireland</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff5">
<OrgDivision>Department of Anaesthetics, Intensive Care and Pain Medicine</OrgDivision>
<OrgName>St. Vincent’s University Hospital</OrgName>
<OrgAddress>
<City>Dublin 4</City>
<Country Code="IE">Ireland</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract Language="En" OutputMedium="All" ID="Abs1">
<Heading>Abstract</Heading>
<Para ID="Par1">The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging connections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiology of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function and development.</Para>
</Abstract>
<KeywordGroup Language="En" OutputMedium="All">
<Heading>Keywords</Heading>
<Keyword>Dorsal diencephalic conduction system</Keyword>
<Keyword>Stria medullaris</Keyword>
<Keyword>Habenula</Keyword>
<Keyword>Fasciculus retroflexus</Keyword>
</KeywordGroup>
</ArticleHeader>
<Body>
<Section1 ID="Sec1">
<Heading>Introduction</Heading>
<Para ID="Par2">The dorsal diencephalic conduction system (DDCS) is a highly conserved integrative and modulatory pathway present in all vertebrates (Sutherland <CitationRef CitationID="CR245">1982</CitationRef>). This bilateral assembly consists of two white matter tracts with an intervening nucleus and is a key conduit connecting the cognitive-emotional basal forebrain to the modulatory monoamine areas of the brainstem (Sutherland <CitationRef CitationID="CR245">1982</CitationRef>; Gardon et al. <CitationRef CitationID="CR83">2014</CitationRef>). It is often overlooked in favor of its more ventral and larger companion, the medial forebrain bundle, which also connects the fore- and hindbrain regions. The similarity in connections (forebrain limbic–striatal to monoaminergic brainstem) and the fact that they converge upon each other anteriorly and posteriorly despite straddling either the dorsal (epithalamic route) or ventral (hypothalamic route) thalamus (Fig. <InternalRef RefID="Fig1">1</InternalRef>) led Nauta to suggest that they may have similar functions with respect to reward behaviors (Nauta <CitationRef CitationID="CR190">1958</CitationRef>). The DDCS first revealed a role in reward in 1970 (Boyd and Celso <CitationRef CitationID="CR27">1970</CitationRef>) and subsequently also showed functionality in the ‘top-down’ modulation of motivation, mood and pain. Highly conserved amongst vertebrates, (Beretta et al. <CitationRef CitationID="CR18">2012</CitationRef>; Concha and Wilson <CitationRef CitationID="CR44">2001</CitationRef>) this system, unlike the singular component of the medial forebrain that forms direct connections (Coenen et al. <CitationRef CitationID="CR42">2018</CitationRef>), is composed of three structures: the white matter stria medullaris, the intervening habenular nucleus and the white matter fasciculus retroflexus. Gathering inputs from diverse frontal areas including the septal nuclei (pleasure and motivation), hypothalamus (arousal and pain), fronto-cortical regions (decision-making), and basal ganglia (motor and behavioral control), the stria medullaris funnels information from these regions into the habenula, situated at the dorso-caudal end of the thalamus (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>; Geisler and Trimble <CitationRef CitationID="CR85">2008</CitationRef>). Information flow in the SM is almost entirely unidirectional (forebrain to habenula), apart from some reciprocal fibers arising from the lateral preoptic and lateral hypothalamic areas (Yamadori <CitationRef CitationID="CR280">1969</CitationRef>; Champney <CitationRef CitationID="CR38">2015</CitationRef>; Patestas and Gartner <CitationRef CitationID="CR198">2016</CitationRef>). After integrating these inputs and relaying in the habenula, output fibers project down through the fasciculus retroflexus to synapse among brainstem monoamine areas including the midbrain ventral tegmental area and hindbrain raphe nuclei. Through this system, distinct frontolimbic areas can modulate monoaminergic release in the brainstem and consequently influence whole brain monoaminergic tone.<Figure Float="Yes" Category="Standard" ID="Fig1">
<Caption Language="En">
<CaptionNumber>Fig. 1</CaptionNumber>
<CaptionContent><SimplePara>The dorsal diencephalic conduction system, with the stria medullaris, habenula and fasciculus retroflexus highlighted. The SM can be seen arching over the thalamus and terminating in the Hb. The larger more wedged-shaped LHb is labeled and can be distinguished from the smaller MHb. The FR can also be identified with fibers arising from the MHb running through the core of the FR and fibers arising from the LHb traveling in the mantle of the FR. Brain photography courtesy of Professor Paul Tierney, Head of Discipline, Department of Anatomy, Trinity College Dublin. <Emphasis Type="Italic">SM</Emphasis> Stria Medullaris, <Emphasis Type="Italic">Hb</Emphasis> habenula, <Emphasis Type="Italic">FR</Emphasis> Fasciculus Retroflexus, <Emphasis Type="Italic">LHb</Emphasis> Lateral Habenula, <Emphasis Type="Italic">MHb</Emphasis> Medial Habenula</SimplePara></CaptionContent>
</Caption><MediaObject ID="MO1"><ImageObject FileRef="406_2020_1128_Fig1_HTML.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"/>
</MediaObject></Figure>
</Para>
<Para ID="Par3">In recent years, the DDCS has received increasing attention (Gardon et al. <CitationRef CitationID="CR83">2014</CitationRef>; Fakhoury et al. <CitationRef CitationID="CR70">2016b</CitationRef>; Roddy et al. <CitationRef CitationID="CR219">2018</CitationRef>; Fore and Yaksi <CitationRef CitationID="CR78">2019</CitationRef>; Ichijo and Toyama <CitationRef CitationID="CR124">2015</CitationRef>), with research suggesting a particular role in neuropsychiatric disorders due to its function in monoamine regulation (Fakhoury <CitationRef CitationID="CR68">2017</CitationRef>). This is the first review to collate the literature on the known anatomy, function and development of the human DDCS as a whole, as opposed to reviews which have focused exclusively on the habenula alone (Hikosaka et al. <CitationRef CitationID="CR115">2008</CitationRef>; Hikosaka <CitationRef CitationID="CR114">2010</CitationRef>; Fakhoury <CitationRef CitationID="CR68">2017</CitationRef>; Bianco and Wilson <CitationRef CitationID="CR20">2009</CitationRef>). Although initially aimed as a review of the human DDCS, due to the relative dearth of human studies, the review will be complemented by other vertebrate studies throughout.</Para>
</Section1>
<Section1 ID="Sec2">
<Heading>Methods</Heading>
<Para ID="Par4">A comprehensive literature search to investigate the range and destination (medial/lateral) of habenular inputs was undertaken for the purpose of this review. Online sources including PubMed/MEDLINE, Google Scholar, EMBASE, OVID, and PsycINFO were systematically searched by the primary and senior authors (ER and DWR) using the terms “HABENULA”/”DORSAL DEINCEPHALIC CONDUCTION SYSTEM”/”FASCICULUS RETROFLEXUS”/”HABENULOPEDUNCULAR TRACT”/”HABENULOINTERPEDUNCULAR TRACT” + “INPUT”/“EFFERENT”/“TRACING”/“CONNECTIONS”/”MIDBRAIN”/HINDBRAIN”. No time limit was imposed on search results. Once areas were identified, the search was rerun for each area separately, e.g., “HABENULA” + “HYPOTHALAMUS”, “HABENULA” + “AMYGDALA”. All vertebrate species were included in the search. For each article, references were checked and accessed if considered potentially relevant. A physical search of older literature and books archived in the Department of Anatomy, Trinity College Dublin was also undertaken. All studies were collated, and the data extracted and crosschecked by two researchers (ER and JW).</Para>
<Para ID="Par5">To determine the mean volume of the habenula, we analyzed data from 14 studies examining normal habenulae (i.e., studies examining habenulae volumes in normal individuals, or control data from clinical studies) in a total of 356 subjects (excluding data from repeated studies). Data were extracted from the results of these studies, and the authors contacted if the raw data was unavailable from published sources. Many study data sets were unavailable and, therefore, mean habenular volumes could not be calculated. As such using the SPSS 24 “compute” command, the MEAN function was used to generate an available analysis (AIA) scale for the missing data (Parent <CitationRef CitationID="CR197">2013</CitationRef>).</Para>
</Section1>
<Section1 ID="Sec3">
<Heading>Stria medullaris</Heading>
<Para ID="Par6">(<Emphasis Type="Italic">Latin; inner strip/furrow</Emphasis>) The stria medullaris (SM), also known as stria medullaris thalami or habenular stria, is a discrete bilateral white matter tract forming the first part of the dorsal diencephalic conduction system (Sutherland <CitationRef CitationID="CR245">1982</CitationRef>). An unlabeled drawing of the SM can be clearly seen in Vesalius’ texts (Vesalius <CitationRef CitationID="CR267">1543</CitationRef>), but was first designated as the <Emphasis Type="Italic">medullary stria</Emphasis> by Wenzel and Wenzel (<CitationRef CitationID="CR277">1812</CitationRef>). Other terms over the years include the <Emphasis Type="Italic">columna medullaris</Emphasis> (Tarin <CitationRef CitationID="CR251">1750</CitationRef>), the <Emphasis Type="Italic">markiger Streisen</Emphasis> (Soemmerring <CitationRef CitationID="CR241">1791</CitationRef>) and <Emphasis Type="Italic">rené</Emphasis> (reins) (Cruveilhier <CitationRef CitationID="CR55">1836</CitationRef>). Previously considered part of the olfactory system due to its origins around the basal forebrain regions (Ramon y Cajal <CitationRef CitationID="CR211">1911</CitationRef>), it is now well established that the SM is the primary afferent of the behavior modifying DDCS (Fakhoury et al. <CitationRef CitationID="CR69">2016a</CitationRef>).</Para>
<Section2 ID="Sec4">
<Heading>Anatomy</Heading>
<Para ID="Par7">The stria medullaris first appears as a bilateral compact fascicle just posterior to the anterior commissure (Buchanan and Newton <CitationRef CitationID="CR31">1948</CitationRef>). At this point, it is in contact with the fornix and stria terminalis as all three tracts converge around the anterior commissure. The SM runs caudally along the roof of the third ventricle, attached to the tela chordae (Faucette <CitationRef CitationID="CR72">1969</CitationRef>) and arches dorsally over the thalamus. Coursing along the dorsomedial border of the thalamus, it forms a distinct horizontal ridge. In the 80% of individuals where an interthalamic adhesion is present (Allen and Gorski <CitationRef CitationID="CR5">1991</CitationRef>; Carpenter <CitationRef CitationID="CR36">1991</CitationRef>), it arches superior to this. The SM then descends caudally, its lateral fibers terminating in the habenula (Buchanan and Frazer <CitationRef CitationID="CR30">1937</CitationRef>; Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>). Cadaveric measurements place the diameter of the stria medullaris at between 1.5 and 2.5 mm across its length (Roddy et al. <CitationRef CitationID="CR219">2018</CitationRef>), being widest caudally where it merges with the habenula. Both the SM and habenula can be seen as a combined rod-like structure on the posteromedial aspect of the thalamus, protruding into the lateral ventricle with an expansion towards the caudal thalamus. The SM white matter tract occupies 30% of the cross-sectional area of the habenula in humans. This SM–habenular interface is greatly enlarged in humans compared to that in rodents, with the SM taking up only 12% of the cross-sectional area in rats (Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>).</Para>
<Para ID="Par8">In contrast to the lateral fibers, the medial SM fibers flex inwards towards the base of the pineal gland and cross to the opposite side. These terminate in the contralateral habenula (Buchanan and Frazer <CitationRef CitationID="CR30">1937</CitationRef>; Naidich and Duvernoy <CitationRef CitationID="CR186">2009</CitationRef>; Diaz et al. <CitationRef CitationID="CR58">2011</CitationRef>). This decussation is known as the habenular commissure (Strotmann et al. <CitationRef CitationID="CR244">2014</CitationRef>). Note that the nearby posterior commissure found in the inferior part of the pineal stalk is not anatomically or functionally part of the DDCS. The habenular commissure lying across the superior part of the pineal stalk together with the SM and habenulae form what is anatomically known as the habenular trigone (Strotmann et al. <CitationRef CitationID="CR244">2014</CitationRef>). The lateral habenula also contributes to the habenular commissure in rats (Kim <CitationRef CitationID="CR137">2009</CitationRef>); however, in humans, it is unclear what proportion of these commissural fibers derive from the SM, medial or lateral habenulae.</Para>
<Para ID="Par9">Three distinct groups of fibers are found in the human stria medullaris. Within the dorsolateral cross section of the tract travel fibers originating from the amygdala and striatal regions (Marburg <CitationRef CitationID="CR166">1944</CitationRef>). Fibers from the basal forebrain areas lie dorsomedial and centrally within the SM; whereas, fibers that originate from the thalamus and hypothalamus are found ventrally. The course and relative position of these fibers remain unchanged through the SM as far as the habenula (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) and correspond with the general trend of lateral habenula fibers being more striatal in origin, and medial fibers being more basal forebrain/septal in origin.</Para>
<Para ID="Par10">The stria medullaris is also reported to have its own nucleus. A small compact group of cells thought to be the bed nucleus of the stria medullaris (BSM) was first reported in mice by Ramon y Cajal (<CitationRef CitationID="CR211">1911</CitationRef>). The nucleus, embedded among myelinated axons of the stria medullaris, is found caudally to the bed nucleus of the anterior commissure and between the stria medullaris and the fornix in rodents (Risold and Swanson <CitationRef CitationID="CR217">1995</CitationRef>; Ramon y Cajal <CitationRef CitationID="CR211">1911</CitationRef>). As a caudal extension of the septal region (Risold and Swanson <CitationRef CitationID="CR217">1995</CitationRef>), the BSM is reported to contain small multipolar neurons and dense collaterals thought to arise from the fornix (Ramon y Cajal <CitationRef CitationID="CR211">1911</CitationRef>). It has also been alluded to by others (Gurdjian <CitationRef CitationID="CR96">1927</CitationRef>; Watson and Paxinos <CitationRef CitationID="CR275">1986</CitationRef>; Jacobowitz and Palkovits <CitationRef CitationID="CR127">1974</CitationRef>); however, borders have been difficult to identify (Risold and Swanson <CitationRef CitationID="CR217">1995</CitationRef>) and connections of BSM itself have been difficult to establish, with only projections to the medial habenula identified thus far (Shinoda and Tohyama <CitationRef CitationID="CR236">1987</CitationRef>).</Para>
<Para ID="Par11">Due to the thinness of the tract, the SM is often missed on standard resolution clinical MR imaging. As this tract has been identified as a potential therapeutic target for deep brain stimulation in depression and other neuropsychiatric diseases (Sartorius and Henn <CitationRef CitationID="CR223">2007</CitationRef>), recent efforts have focused in localizing the trajectory of the tract for stereotactic neurosurgery using diffusion-weighted imaging (Kochanski et al. <CitationRef CitationID="CR141">2016</CitationRef>; Roddy et al. <CitationRef CitationID="CR219">2018</CitationRef>).</Para>
</Section2>
<Section2 ID="Sec5">
<Heading>Function</Heading>
<Para ID="Par12">In general, the SM gathers fibers from frontal, septal, striatal and hypothalamic areas and relays information from these areas through a single tract to the lateral and medial habenulae. Information is transmitted through the tract in a mostly unidirectional <!-- Query ID="Q1" Text="Please confirm the section headings are correctly identified." -->manner from the forebrain regions to the habenula. To date, however, there have been no fiber tracing or staining studies of the human SM.</Para>
<Para ID="Par13">The first-order inputs to the lateral habenula through the stria medullaris include the lateral preoptic area, the lateral hypothalamus, anterior hypothalamic nucleus, bed nucleus of the stria terminalis, the internal segment of the globus pallidus, substantia innominata and septum (Klemm <CitationRef CitationID="CR140">2004</CitationRef>; Hikosaka et al. <CitationRef CitationID="CR115">2008</CitationRef>). Second- and further-order inputs arise from medial, lateral and preoptic hypothalamic areas (Klemm <CitationRef CitationID="CR140">2004</CitationRef>). The SM also inputs information from the nucleus of the diagonal band of Broca, lateral hypothalamus, lateral preoptic area and medial septal nuclei into the medial habenula (Akagi and Powell <CitationRef CitationID="CR4">1968</CitationRef>; Klemm <CitationRef CitationID="CR140">2004</CitationRef>). SM afferents are primarily cholinergic, glutamatergic and GABAergic, with primary GABAergic and cholinergic input into the habenula being supplied by the nucleus of the diagonal band of Broca via the SM (Viswanath et al. <CitationRef CitationID="CR270">2013</CitationRef>; Klemm <CitationRef CitationID="CR140">2004</CitationRef>). This was supported when bilateral transection of the SM in rodents induced a 50% decrease in choline acetyltransferase, an enzyme responsible for acetylcholine synthesis, in the habenulae and the downstream interpeduncular nucleus, as well as a 65% decrease of glutamate decarboxylase in the habenula (Contestabile and Fonnum <CitationRef CitationID="CR48">1983</CitationRef>).</Para>
<Para ID="Par14">The stria medullaris has recently been suggested as a therapeutic target for the treatment of depression and other neuropsychiatry diseases using deep brain stimulation (Sartorius and Henn <CitationRef CitationID="CR223">2007</CitationRef>). Even though modulation of the lateral habenula is the proposed mechanism of this technique, electrode placement occurs at the caudal end of the SM, just beside the habenula. To date, two patients with intractable depression have shown marked improvement with modulation of the DDCS through SM stimulation (Sartorius et al. <CitationRef CitationID="CR224">2010</CitationRef>; Kiening and Sartorius <CitationRef CitationID="CR134">2013</CitationRef>).</Para>
<Para ID="Par15">The SM and habenula, although discrete structures, are essentially a functional unit and defining a function for the SM independent of the habenula is impossible. As such, the function of the SM will be integrated in the below section.</Para>
</Section2>
</Section1>
<Section1 ID="Sec6">
<Heading>Habenula</Heading>
<Para ID="Par16">(Latin; <Emphasis Type="Italic">little reign</Emphasis>) The trigonum habenulae is a small triangular eminence encompassed by the pineal gland, the posterior part of the stria medullaris and the adjacent part of the thalamus (Buchanan and Frazer <CitationRef CitationID="CR30">1937</CitationRef>; Naidich and Duvernoy <CitationRef CitationID="CR186">2009</CitationRef>). A slight swelling in this trigone indicates the position of the evolutionary conserved gray matter structure called the habenula (also known as the habenular complex, due to being composed of multiple nuclei) (Nolte <CitationRef CitationID="CR192">2002</CitationRef>). It was first named by Meynert who described a small mass of gray matter on the posteromedial aspect of the thalamus (Meynert <CitationRef CitationID="CR172">1872</CitationRef>). Originally considered anatomically and functionally the stalk of the adjacent pineal gland, it refers to two distinct groups of nuclei at the caudal end of the stria medullaris.</Para>
<Para ID="Par17">The habenula is the central component of the DDCS and has been well conserved throughout vertebrate evolution (Loonen et al. <CitationRef CitationID="CR164">2017</CitationRef>). It acts as a hub, with limbic pathways traversing the stria medullaris to relay to the habenula prior to transmitting signals to brainstem modulatory areas (Carpenter <CitationRef CitationID="CR36">1991</CitationRef>). As such, it is vital for integrating motor, cognitive, emotional and sensory processing within a single locus to influence motivational processes and value-based decision-making (Gardon et al. <CitationRef CitationID="CR83">2014</CitationRef>). Recent studies highlighting the function of the habenula in encoding reward and aversive behavior have renewed the interest into this small structure.</Para>
<Section2 ID="Sec7">
<Heading>Anatomy</Heading>
<Para ID="Par18">The habenula, like many limbic structures, was initially believed to have primarily olfactory connections (Ramon y Cajal <CitationRef CitationID="CR211">1911</CitationRef>); however, repeated studies have revealed its connections with a wide variety of regions across the brain (Rausch and Long <CitationRef CitationID="CR214">1971</CitationRef>; Powell et al. <CitationRef CitationID="CR206">1965</CitationRef>; Greatrex and Phillipson <CitationRef CitationID="CR91">1982</CitationRef>; Gamble <CitationRef CitationID="CR82">1952</CitationRef>). The habenula has both medial and lateral nuclei (see below). The literature strategy revealed that 135 studies have investigated habenular connections in diverse vertebrates from lizards to primates. Only one study to date has traced the connections of the human habenular complex (Marburg <CitationRef CitationID="CR166">1944</CitationRef>). The results are presented in Table <InternalRef RefID="Tab1">1</InternalRef>. Although some overlap, broadly speaking, motor, frontal, thalamic, hypothalamic, basal ganglia and associated areas (e.g., ventral tegmental area) project to the lateral habenula; whereas, septal and limbic associated areas (e.g., hippocampus) project to the medial habenula.<Table ID="Tab1" Float="Yes">
<Caption Language="En">
<CaptionNumber>Table 1</CaptionNumber>
<CaptionContent><SimplePara>Habenular inputs collated from previous tracing studies</SimplePara></CaptionContent>
</Caption>
<tgroup cols="3">
<colspec colnum="1" colname="c1" align="left"/>
<colspec colnum="2" colname="c2" align="left"/>
<colspec colnum="3" colname="c3" align="left"/>
<thead>
<row>
<entry align="left" colname="c1"><SimplePara>Area of input</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Nucleus</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>References</SimplePara></entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Cortical regions</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Piriform cortex</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Gurdjian <CitationRef CitationID="CR95">1925</CitationRef>) (rat), (Carl Huber and Crosby <CitationRef CitationID="CR34">1929</CitationRef>) (bird), (Hines <CitationRef CitationID="CR116">1929</CitationRef>) (platypus), (Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Young <CitationRef CitationID="CR286">1936</CitationRef>) (rabbit), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander), (Gamble <CitationRef CitationID="CR82">1952</CitationRef>) (lizard), (Gamble <CitationRef CitationID="CR81">1956</CitationRef>) (tortoise), (Ban <CitationRef CitationID="CR13">1962</CitationRef>) (rat), (Powell et al. <CitationRef CitationID="CR206">1965</CitationRef>) (rat), (Millhouse <CitationRef CitationID="CR173">1969</CitationRef>) (mouse), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Kim and Lee <CitationRef CitationID="CR138">2012</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Hippocampus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Hines <CitationRef CitationID="CR116">1929</CitationRef>) (platypus), (Young <CitationRef CitationID="CR286">1936</CitationRef>) (rabbit), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Amygdala</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>“Nucleus Taenia” (Carl Huber and Crosby <CitationRef CitationID="CR34">1929</CitationRef>) (bird), (Young <CitationRef CitationID="CR286">1936</CitationRef>) (rabbit), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) ( human), (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander), (Gamble <CitationRef CitationID="CR82">1952</CitationRef>) (lizard), (Laursen <CitationRef CitationID="CR150">1955</CitationRef>) (monkey), (Kusama and Hagino <CitationRef CitationID="CR146">1961</CitationRef>) (rabbit), (Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cats), (Cowan et al. <CitationRef CitationID="CR52">1965</CitationRef>) (rat), (Johnson <CitationRef CitationID="CR129">1965</CitationRef>) (cat), (Millhouse <CitationRef CitationID="CR173">1969</CitationRef>) (mouse), (Leonard and Scott <CitationRef CitationID="CR155">1971</CitationRef>) (rats), (Iwahori <CitationRef CitationID="CR126">1977</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Prelimbic cortex</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Gamble <CitationRef CitationID="CR82">1952</CitationRef>) (lizard), (Kim and Lee <CitationRef CitationID="CR138">2012</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Infralimbic cortex</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Kim and Lee <CitationRef CitationID="CR138">2012</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anterior cingulate cortex</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Kim and Lee <CitationRef CitationID="CR138">2012</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anterior insular cortex</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Vertes <CitationRef CitationID="CR263">2002</CitationRef>) (rat), (Vertes <CitationRef CitationID="CR264">2004</CitationRef>) (rat), (Kim and Lee <CitationRef CitationID="CR138">2012</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Basal forebrain</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Septum undifferentiated</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Gurdjian <CitationRef CitationID="CR95">1925</CitationRef>) (rat), (Carl Huber and Crosby <CitationRef CitationID="CR34">1929</CitationRef>) (bird), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Nauta <CitationRef CitationID="CR188">1956</CitationRef>) (Rat), (Nauta <CitationRef CitationID="CR190">1958</CitationRef>) (cat), (Valenstein and Nauta <CitationRef CitationID="CR259">1959</CitationRef>) (Rat, guinea pig, cat and monkey), (Guillery <CitationRef CitationID="CR94">1959</CitationRef>) (Cat), (Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (rabbit, rat and cat), (Ban <CitationRef CitationID="CR13">1962</CitationRef>) (rat), (Powell <CitationRef CitationID="CR202">1963</CitationRef>) (rat), (Zyo <CitationRef CitationID="CR292">1963</CitationRef>) (rabbit), (Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cats), (Johnson <CitationRef CitationID="CR129">1965</CitationRef>) (cat), (Raisman <CitationRef CitationID="CR210">1966</CitationRef>) (rat), (Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), (Powell <CitationRef CitationID="CR204">1968</CitationRef>) (Rat, cat and monkey), (Mizuno et al. <CitationRef CitationID="CR175">1969</CitationRef>) (cat), (Genton <CitationRef CitationID="CR86">1969</CitationRef>) (mouse), (Price and Powell <CitationRef CitationID="CR207">1970</CitationRef>) (Rat), (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>) (opossum and cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Iwahori <CitationRef CitationID="CR126">1977</CitationRef>) (cat), (Meibach and Siegel <CitationRef CitationID="CR170">1977</CitationRef>) (rat), (Swanson and Cowan <CitationRef CitationID="CR248">1979</CitationRef>) (rat), (Gottesfeld and Jacobowitz <CitationRef CitationID="CR89">1979</CitationRef>) (rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard), (Shinoda and Tohyama <CitationRef CitationID="CR236">1987</CitationRef>) (rat),(Kawaja et al. <CitationRef CitationID="CR131">1990</CitationRef>) (rat), “septal nucleus impar” (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Medial septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), (Qin and Luo <CitationRef CitationID="CR208">2009</CitationRef>) (mouse)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lateral septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Powell <CitationRef CitationID="CR202">1963</CitationRef>) (rat), (Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), (Powell <CitationRef CitationID="CR204">1968</CitationRef>) (Rat, cat and monkey), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Gottesfeld and Jacobowitz <CitationRef CitationID="CR89">1979</CitationRef>) (rat), (Sim and Joseph <CitationRef CitationID="CR237">1991</CitationRef>) (rats), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Risold and Swanson <CitationRef CitationID="CR218">1997</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Posterior septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), (Powell <CitationRef CitationID="CR204">1968</CitationRef>) (Rat, cat and monkey)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Septofibrial nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Young <CitationRef CitationID="CR286">1936</CitationRef>) (rabbit), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Staines et al. <CitationRef CitationID="CR243">1988</CitationRef>) (Rat), (Kawaja et al. <CitationRef CitationID="CR131">1990</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Triangular nucleus of septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Staines et al. <CitationRef CitationID="CR243">1988</CitationRef>) (Rat), (Kawaja et al. <CitationRef CitationID="CR131">1990</CitationRef>) (rat), (Qin and Luo <CitationRef CitationID="CR208">2009</CitationRef>) (mouse)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Precommissural septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral/unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Zyo <CitationRef CitationID="CR292">1963</CitationRef>) (rabbit), (Johnson <CitationRef CitationID="CR129">1965</CitationRef>) (cat), “rostral septum” (Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), “rostral septum” (Powell <CitationRef CitationID="CR204">1968</CitationRef>) (Rat, cat and monkey)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Supracommissural septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Nauta <CitationRef CitationID="CR188">1956</CitationRef>) (Rat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Postcommissural septum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (rabbit, rat and cat), (Ban <CitationRef CitationID="CR13">1962</CitationRef>) (rat), (Johnson <CitationRef CitationID="CR129">1965</CitationRef>) (cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Staines et al. <CitationRef CitationID="CR243">1988</CitationRef>) (Rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Diagonal band of Broca</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Guillery <CitationRef CitationID="CR94">1959</CitationRef>) (Cat), (Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), (Price and Powell <CitationRef CitationID="CR207">1970</CitationRef>) (Rat), (Conrad and Pfaff <CitationRef CitationID="CR47">1976b</CitationRef>) (rat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Meibach and Siegel <CitationRef CitationID="CR170">1977</CitationRef>) (rat), (Gottesfeld and Jacobowitz <CitationRef CitationID="CR89">1979</CitationRef>) (rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Staines et al. <CitationRef CitationID="CR243">1988</CitationRef>) (Rat), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Qin and Luo <CitationRef CitationID="CR208">2009</CitationRef>) (mouse), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Susbtantia innominata</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (rabbit, rat and cat), (Kim et al. <CitationRef CitationID="CR136">1976</CitationRef>) (monkey), “nucleus basalis” (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Troiano and Siegel <CitationRef CitationID="CR256">1978a</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Nucleus accumbens</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>“pars medialis of nucleus accumbens” (Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Powell <CitationRef CitationID="CR203">1966</CitationRef>) (cat), (Powell and Leman <CitationRef CitationID="CR205">1976</CitationRef>) (monkey), (Conrad and Pfaff <CitationRef CitationID="CR47">1976b</CitationRef>) (Rat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Troiano and Siegel <CitationRef CitationID="CR256">1978a</CitationRef>) (cat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anterior olfactory nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Gurdjian <CitationRef CitationID="CR95">1925</CitationRef>) (rat), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Gamble <CitationRef CitationID="CR82">1952</CitationRef>) (lizard), (Gamble <CitationRef CitationID="CR81">1956</CitationRef>) (tortoise), (Millhouse <CitationRef CitationID="CR173">1969</CitationRef>) (mouse), (Ferrer <CitationRef CitationID="CR74">1969</CitationRef>) (hamster, (Heimer <CitationRef CitationID="CR105">1972</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Olfactory tubercle</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Morin <CitationRef CitationID="CR179">1950</CitationRef>) (Guinea Pig), (Kusama and Hagino <CitationRef CitationID="CR146">1961</CitationRef>) (rabbit), (Ban <CitationRef CitationID="CR13">1962</CitationRef>) (rat), (Millhouse <CitationRef CitationID="CR173">1969</CitationRef>) (mouse), (Heimer <CitationRef CitationID="CR105">1972</CitationRef>) (rat), (Iwahori <CitationRef CitationID="CR126">1977</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Olfactory bulb</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Ramon y Cajal <CitationRef CitationID="CR211">1911</CitationRef>) (vertebrates), (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Central white matter nuclei</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Nucleus of posterior pallial commissure</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Bed nucleus of anterior commissure</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Carl Huber and Crosby <CitationRef CitationID="CR34">1929</CitationRef>) (bird), Herrick <CitationRef CitationID="CR112">1948</CitationRef> (tiger salamander), (Staines et al. <CitationRef CitationID="CR243">1988</CitationRef>) (Rat), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Bed nucleus of stria terminalis</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (Rabbit), (Conrad and Pfaff <CitationRef CitationID="CR47">1976b</CitationRef>) (Albino Rats), (Swanson and Cowan <CitationRef CitationID="CR248">1979</CitationRef>) (rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Weller and Smith <CitationRef CitationID="CR276">1982</CitationRef>) (rat), (Staines et al. <CitationRef CitationID="CR243">1988</CitationRef>) (Rat), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Dong and Swanson <CitationRef CitationID="CR60">2006</CitationRef>) (rats), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Basal Ganglia</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Globus pallidus externa</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral/unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Ranson and Ranson <CitationRef CitationID="CR213">1941</CitationRef>) (monkey), (Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cats), (Nauta and Mehler <CitationRef CitationID="CR189">1966</CitationRef>) (monkey), (Kim et al. <CitationRef CitationID="CR136">1976</CitationRef>) (monkey), (Gottesfeld et al. <CitationRef CitationID="CR90">1977</CitationRef>) (rat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (Rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard), (Araki et al. <CitationRef CitationID="CR10">1984</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Globus Pallidus interna (Entopeduncular Nucleus)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral/unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cat), (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander), (Nauta and Mehler <CitationRef CitationID="CR189">1966</CitationRef>) (Monkey), (Kim et al. <CitationRef CitationID="CR136">1976</CitationRef>) (monkey), (Iwahori <CitationRef CitationID="CR126">1977</CitationRef>) (cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Gottesfeld et al. <CitationRef CitationID="CR90">1977</CitationRef>) (rat), (Nagy et al. <CitationRef CitationID="CR185">1978</CitationRef>) (rat), (Filion and Harnois <CitationRef CitationID="CR75">1978</CitationRef>) (cat), (Carter and Fibiger <CitationRef CitationID="CR37">1978</CitationRef>) (rat), (Larsen and Sutin <CitationRef CitationID="CR149">1978</CitationRef>) (cat), (Parent <CitationRef CitationID="CR194">1979</CitationRef>) (squirrel monkey), (Larsen and McBride <CitationRef CitationID="CR148">1979</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Van Der Kooy and Carter <CitationRef CitationID="CR260">1981</CitationRef>) (rat), (McBride <CitationRef CitationID="CR169">1981</CitationRef>) (cat), (Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard), (Vincent et al. <CitationRef CitationID="CR268">1982</CitationRef>) (rat), (Garland and Mogenson <CitationRef CitationID="CR84">1983</CitationRef>) (rats), (Araki et al. <CitationRef CitationID="CR10">1984</CitationRef>) (Rat), (Vincent and Brown <CitationRef CitationID="CR269">1986</CitationRef>) (Rat), (Shinoda and Tohyama <CitationRef CitationID="CR236">1987</CitationRef>) (rat), (Hazrati and Parent <CitationRef CitationID="CR104">1991</CitationRef>) (squirrel monkey), (Moriizumi and Hattori <CitationRef CitationID="CR178">1992</CitationRef>) (rat), “lobus subhippocampus” (Yañez and Anadon <CitationRef CitationID="CR282">1994</CitationRef>) (Lamprey), “rostral thalamus” (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout), (Kha et al. <CitationRef CitationID="CR133">2000</CitationRef>) (rats), (Parent et al. <CitationRef CitationID="CR196">2001</CitationRef>) (monkey), (Folgueira et al. <CitationRef CitationID="CR76">2004</CitationRef>) (rainbow trout), (Wallace et al. <CitationRef CitationID="CR273">2017</CitationRef>) (mice)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Ventral Pallidum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Kim et al. <CitationRef CitationID="CR136">1976</CitationRef>) (monkey), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Troiano and Siegel <CitationRef CitationID="CR257">1978b</CitationRef>) (cat), (Parent <CitationRef CitationID="CR194">1979</CitationRef>) (squirrel monkey), (Groenewegen et al. <CitationRef CitationID="CR92">1993</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Haber et al. <CitationRef CitationID="CR97">1993</CitationRef>) (monkey), (Zahm et al. <CitationRef CitationID="CR287">1996</CitationRef>) (rats), (Hendricks and Jesuthasan <CitationRef CitationID="CR106">2007</CitationRef>) (Zebrafish), (Tripathi et al. <CitationRef CitationID="CR254">2013</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Thalamic nuclei</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Thalamus undifferentiated</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Hines <CitationRef CitationID="CR116">1929</CitationRef>) (platypus), “dorsal thalamus” (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander), (Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cats), (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>) (opossum and cat), “dorsal thalamus” (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), “thalamic eminence” (Krug et al. <CitationRef CitationID="CR145">1993</CitationRef>) (Axolotl—fish), “thalamic eminence” (Hendricks and Jesuthasan <CitationRef CitationID="CR106">2007</CitationRef>) (Zebrafish)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anterior Group</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (rabbit), (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>) (opossum and cat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anterodorsal nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Yañez and Anadon <CitationRef CitationID="CR282">1994</CitationRef>) (Lamprey)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anteroventral nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Paramedian thalamus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (rabbit), (Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Reticular nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara>Epithalamus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>“pineal gland” (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout) </SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Hypothalamus</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Hypothalamus undifferentiated</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Carl Huber and Crosby <CitationRef CitationID="CR34">1929</CitationRef>) (bird), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cats), (Zyo <CitationRef CitationID="CR292">1963</CitationRef>) (rabbit), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lateral nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Nauta <CitationRef CitationID="CR190">1958</CitationRef>) (cat), (Kusama and Hagino <CitationRef CitationID="CR146">1961</CitationRef>) (rabbit), (Zyo <CitationRef CitationID="CR292">1963</CitationRef>) (rabbit), (Wolf and Sutin <CitationRef CitationID="CR278">1966</CitationRef>) (Rat), (Mizuno et al. <CitationRef CitationID="CR175">1969</CitationRef>) (cat), (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>) (opossum and cat), (Troiano and Siegel <CitationRef CitationID="CR255">1975</CitationRef>) (cat), (Swanson <CitationRef CitationID="CR247">1976</CitationRef>) (rat), (Iwahori <CitationRef CitationID="CR126">1977</CitationRef>) (cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (Rat), (Parent <CitationRef CitationID="CR194">1979</CitationRef>) monkey), (Saper et al. <CitationRef CitationID="CR222">1979</CitationRef>) (rat), (McBride <CitationRef CitationID="CR169">1981</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Berk and Finkelstein <CitationRef CitationID="CR19">1982</CitationRef>) (Rat), (Araki et al. <CitationRef CitationID="CR10">1984</CitationRef>) (Rat), (Shinoda and Tohyama <CitationRef CitationID="CR236">1987</CitationRef>) (rat), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat), (Kowski et al. <CitationRef CitationID="CR143">2008</CitationRef>) (rat), (Hahn and Swanson <CitationRef CitationID="CR98">2010</CitationRef>) (rat), (Hahn and Swanson <CitationRef CitationID="CR99">2012</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Dorsomedial nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Paraventricular nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>“magnocellular nucleus” (Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>) (opossum and cat), (von Bartheld and Meyer <CitationRef CitationID="CR272">1990</CitationRef>) (lungfish), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Suprachiasmatic nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Buijs <CitationRef CitationID="CR32">1978</CitationRef>) (rats), (Sofroniew et al. <CitationRef CitationID="CR242">1981</CitationRef>) (rats)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Ventromedial nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Anterior nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Conrad and Pfaff <CitationRef CitationID="CR47">1976b</CitationRef>) (Albino Rats), (McBride <CitationRef CitationID="CR169">1981</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Risold et al. <CitationRef CitationID="CR216">1994</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Supraoptic nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Posterior nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(McBride <CitationRef CitationID="CR169">1981</CitationRef>) (cat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Preoptic hypothalamus undifferentiated</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Gurdjian <CitationRef CitationID="CR95">1925</CitationRef>) (rat), (Gurdjian <CitationRef CitationID="CR96">1927</CitationRef>) (rat), (Hines <CitationRef CitationID="CR116">1929</CitationRef>) (platypus), (Carl Huber and Crosby <CitationRef CitationID="CR34">1929</CitationRef>) (bird), (Loo <CitationRef CitationID="CR163">1931</CitationRef>) (Opossum), (Humphrey <CitationRef CitationID="CR121">1936</CitationRef>) (bat), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander), (Zyo <CitationRef CitationID="CR292">1963</CitationRef>) (rabbit), (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>) (opossum and cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (Rat), (McBride <CitationRef CitationID="CR169">1981</CitationRef>) (cat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Medial preoptic nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Gurdjian <CitationRef CitationID="CR95">1925</CitationRef>) (rat), (Young <CitationRef CitationID="CR286">1936</CitationRef>) (rabbit), (Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Conrad and Pfaff <CitationRef CitationID="CR46">1976a</CitationRef>) (Albino Rat), (Anderson and Shen <CitationRef CitationID="CR8">1980</CitationRef>) (guinea pig), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lateral preoptic nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Young <CitationRef CitationID="CR286">1936</CitationRef>) (rabbit), (Nauta <CitationRef CitationID="CR190">1958</CitationRef>) (cat), (Cragg <CitationRef CitationID="CR54">1961</CitationRef>) (Rabbit), (Kusama and Hagino <CitationRef CitationID="CR146">1961</CitationRef>) (rabbit), (Zyo <CitationRef CitationID="CR292">1963</CitationRef>) (rabbit), (Cowan et al. <CitationRef CitationID="CR52">1965</CitationRef>) (rat), (Wolf and Sutin <CitationRef CitationID="CR278">1966</CitationRef>) (rat), (Mizuno et al. <CitationRef CitationID="CR175">1969</CitationRef>) (cat), (Troiano and Siegel <CitationRef CitationID="CR255">1975</CitationRef>) (cat), (Swanson <CitationRef CitationID="CR247">1976</CitationRef>) (rat), (Iwahori <CitationRef CitationID="CR126">1977</CitationRef>) (cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Troiano and Siegel <CitationRef CitationID="CR257">1978b</CitationRef>) (cat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Garland and Mogenson <CitationRef CitationID="CR84">1983</CitationRef>) (rats), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat), (Kowski et al. <CitationRef CitationID="CR143">2008</CitationRef>) (Rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Mammillary bodies</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Premammillary nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c3" namest="c1"><SimplePara>Brainstem</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Tectum</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Marburg <CitationRef CitationID="CR166">1944</CitationRef>) (human), (Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Tegmentum undifferentiated</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Laterodorsal tegmental nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral/unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>“nucleus isthmi” (Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard), (Cornwall et al. <CitationRef CitationID="CR51">1990</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Dorsal tegmental area</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Goto et al. <CitationRef CitationID="CR87">2001</CitationRef>) (rat), (Olucha‐Bordonau et al. <CitationRef CitationID="CR193">2003</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Ventral tegmental area</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Lindvall and Björklund <CitationRef CitationID="CR162">1974</CitationRef>) (rat), (Kizer et al. <CitationRef CitationID="CR139">1976</CitationRef>) (rat),), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), “ventral tegmental pars lateralis” (Simon et al. <CitationRef CitationID="CR238">1979</CitationRef>) (rat), (Beckstead et al. <CitationRef CitationID="CR16">1979</CitationRef>) (rat), “ventral tegmental interfascicular nucleus” and “ventral tegmental median paranigral” (Phillipson and Griffith <CitationRef CitationID="CR199">1980</CitationRef>) (rat), (Parent et al. <CitationRef CitationID="CR195">1981</CitationRef>) (rat, cat and monkey), (Phillipson and Pycock <CitationRef CitationID="CR200">1982</CitationRef>) (rat), (Swanson <CitationRef CitationID="CR246">1982</CitationRef>) (rat), (Skagerberg et al. <CitationRef CitationID="CR239">1984</CitationRef>) (rat), (Díaz and Puelles <CitationRef CitationID="CR57">1992</CitationRef>) (Lizard), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Gruber et al. <CitationRef CitationID="CR93">2007</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Pretectal area</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Herrick <CitationRef CitationID="CR112">1948</CitationRef>) (tiger salamander)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Periaqueductal gray</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Locus coeruleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Unspecified</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard), (Gottesfeld <CitationRef CitationID="CR88">1983</CitationRef>) (rat), (Yañez and Anadón <CitationRef CitationID="CR283">1996</CitationRef>) (rainbow trout), (Gruber et al. <CitationRef CitationID="CR93">2007</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Substantia nigra compacta</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Kizer et al. <CitationRef CitationID="CR139">1976</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Interpeduncular nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Massopust Jr and Thompson 1962) (rats and cats), (Mitchell <CitationRef CitationID="CR174">1963</CitationRef>) (cats)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Raphe Nuclei undifferentiated</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Moore et al. <CitationRef CitationID="CR176">1978</CitationRef>) (rat), (McBride <CitationRef CitationID="CR169">1981</CitationRef>) (cat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat),(Morin and Meyer-Bernstein <CitationRef CitationID="CR180">1999</CitationRef>) (hamster), (Felton et al. <CitationRef CitationID="CR73">1999</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat), (Muzerelle et al. <CitationRef CitationID="CR184">2016</CitationRef>) (mouse)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Raphe nuclei dorsal</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Conrad et al. <CitationRef CitationID="CR45">1974</CitationRef>) (rat), (Pierce et al. <CitationRef CitationID="CR201">1976</CitationRef>) (cat), (Azmitia and Segal <CitationRef CitationID="CR11">1978</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Raphe nuclei median</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial/lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Conrad et al. <CitationRef CitationID="CR45">1974</CitationRef>) (rat), “superior raphe” (Bobillier et al. <CitationRef CitationID="CR23">1975</CitationRef>) (cat), “superior raphe” (Bobillier et al. <CitationRef CitationID="CR25">1976</CitationRef>) (cat), (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>) (rat), (Azmitia and Segal <CitationRef CitationID="CR11">1978</CitationRef>) (rat), “superior raphe” (Bobillier et al. <CitationRef CitationID="CR24">1979</CitationRef>) (rat), “superior raphe” (Hoogland <CitationRef CitationID="CR118">1982</CitationRef>) (lizard), (Hallanger et al. <CitationRef CitationID="CR100">1987</CitationRef>) (rat), (Vertes and Martin <CitationRef CitationID="CR266">1988</CitationRef>) (rat), (Vertes et al. <CitationRef CitationID="CR265">1999</CitationRef>) (rat), (Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat), (Yetnikoff et al. <CitationRef CitationID="CR285">2015</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Interfascicular nucleus</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Li et al. <CitationRef CitationID="CR159">1993</CitationRef>) (rat)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Superior Cervical ganglion</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>(Björklund et al. <CitationRef CitationID="CR22">1972</CitationRef>) (rat), (Lindvall and Björklund <CitationRef CitationID="CR162">1974</CitationRef>) (rat), (Gottesfeld <CitationRef CitationID="CR88">1983</CitationRef>) (rat)</SimplePara></entry>
</row>
</tbody>
</tgroup>
</Table>
</Para>
<Para ID="Par19">Although easily distinguishable as the thick caudal expansion of the combined SM–habenula rod-like structure that protrudes into the lateral ventricle, defining the rostral most boundaries of the habenula is challenging in gross dissections. This is because the SM tapers caudally and dorsally into the habenula. Regional microscopic differences in cellular distribution, however, allow the habenula to be distinguished from the white matter fibers of the SM and the multipolar cells of the adjacent thalamus (Marburg <CitationRef CitationID="CR166">1944</CitationRef>; Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>). The habenular width is approximately 5–9 mm across (Strotmann et al. <CitationRef CitationID="CR244">2014</CitationRef>), as such the structure is difficult to visualize accurately using standard clinical MRI. However, using high-resolution magnetic resonance imaging (resolution &lt; 1.5mm<Superscript>3</Superscript>), it has recently been possible to determine the mean habenular volumes in a number of studies (Table <InternalRef RefID="Tab2">2</InternalRef>a). Extrapolated mean values for left and right habenular complex volumes were found to be 21.9 mm<Superscript>3</Superscript> (SD ± 6.5 mm<Superscript>3</Superscript>) and 20.6 mm<Superscript>3</Superscript> (SD ± 6.7 mm<Superscript>3</Superscript>), respectively. A single post-mortem study has investigated habenular volumes (Ranft et al. <CitationRef CitationID="CR212">2010</CitationRef>). This study suggested larger habenular volumes revealing lateral volumes of 27.57 mm (SD ± 5.05 mm) and 29.59 mm (SD ± 4.83 mm) and medial volumes of 3.35 mm (SD ± 1.33 mm) and 3.64 mm (SD ± 0.97 mm) for left and right sides, respectively. MRI resolution limitations, age variation and differences in measurement techniques between post-mortem and MRI studies could potentially account for the difference between the two methods of volume estimation.<Table ID="Tab2" Float="Yes">
<Caption Language="En">
<CaptionNumber>Table 2</CaptionNumber>
<CaptionContent><SimplePara>(A and B) Summary of habenular volumes given in mm<Superscript>3</Superscript> in the current literature</SimplePara></CaptionContent>
</Caption>
<tgroup cols="8">
<colspec colnum="1" colname="c1" align="left"/>
<colspec colnum="2" colname="c2" align="left"/>
<colspec colnum="3" colname="c3" align="left"/>
<colspec colnum="4" colname="c4" align="left"/>
<colspec colnum="5" colname="c5" align="left"/>
<colspec colnum="6" colname="c6" align="left"/>
<colspec colnum="7" colname="c7" align="left"/>
<colspec colnum="8" colname="c8" align="left"/>
<thead>
<row>
<entry align="left" colname="c1"><SimplePara>Name</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Participants</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Total volume</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>SD</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Left volume</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>SD</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>Right volume</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>SD</SimplePara></entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" colname="c1" nameend="c8" namest="c1"><SimplePara>(A) Magnetic resonance imaging</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Kim et al. (<CitationRef CitationID="CR135">2016</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>50</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>21.1</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>5.2</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>21.3</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>4.5</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Kim et al. (<CitationRef CitationID="CR135">2016</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>6</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>18.3</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>2.3</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>17.9</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>2.1</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lawson et al. (<CitationRef CitationID="CR151">2013</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>24</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>29.4</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>4.7</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>29.3</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>3.7</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Hétu et al. (<CitationRef CitationID="CR113">2016</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>34</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>27.88</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>8.49</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>28.03</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>8.18</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Carceller-Sindreu et al. (<CitationRef CitationID="CR33">2015</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>34</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>42.99</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>9.4</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara></SimplePara></entry>
<entry align="left" colname="c6"><SimplePara></SimplePara></entry>
<entry align="left" colname="c7"><SimplePara></SimplePara></entry>
<entry align="left" colname="c8"><SimplePara></SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Furman and Gotlib (<CitationRef CitationID="CR80">2016</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>13</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>28.7</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>2.5</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>27.3</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>7</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lawson et al. (<CitationRef CitationID="CR152">2017</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>25</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>22.31</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>9.29</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara></SimplePara></entry>
<entry align="left" colname="c6"><SimplePara></SimplePara></entry>
<entry align="left" colname="c7"><SimplePara></SimplePara></entry>
<entry align="left" colname="c8"><SimplePara></SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Savitz et al. (<CitationRef CitationID="CR225">2011a</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>75</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>36.9</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>8.5</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>19.8</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>5.1</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>17.1</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>4.6</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Savitz et al. (<CitationRef CitationID="CR226">2011b</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>74</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>36.5</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>8.7</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>19.5</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>5.2</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>17</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>4.7</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Schmidt et al. (<CitationRef CitationID="CR228">2017</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>20</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>34.92</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>11.34</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>17.63</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>5.49</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>17.29</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>6.12</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Zhang et al. (<CitationRef CitationID="CR288">2017</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>16</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>24.02</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>3.2</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>20.42</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>3.46</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Bocchetta et al. (<CitationRef CitationID="CR26">2016</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>15</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>23.6</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>2.2</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>23.3</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>2.2</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Torrisi et al. (<CitationRef CitationID="CR252">2017</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>32</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara></SimplePara></entry>
<entry align="left" colname="c4"><SimplePara></SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>18.8</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>6</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>14.9</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>4</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Hennigan et al. (<CitationRef CitationID="CR107">2015</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>18</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>35.35</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>13.3</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara></SimplePara></entry>
<entry align="left" colname="c6"><SimplePara></SimplePara></entry>
<entry align="left" colname="c7"><SimplePara></SimplePara></entry>
<entry align="left" colname="c8"><SimplePara></SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c2" namest="c1"><SimplePara> Extrapolated mean values</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>36.3</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>10.98</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>21.89</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>6.47</SimplePara></entry>
<entry align="left" colname="c7"><SimplePara>20.62</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>6.71</SimplePara></entry>
</row>
</tbody>
</tgroup>
<tgroup cols="12">
<colspec colnum="1" colname="c1" align="left"/>
<colspec colnum="2" colname="c2" align="char" char=""/>
<colspec colnum="3" colname="c3"/>
<colspec colnum="4" colname="c4"/>
<colspec colnum="5" colname="c5"/>
<colspec colnum="6" colname="c6"/>
<colspec colnum="7" colname="c7"/>
<colspec colnum="8" colname="c8" align="char" char=""/>
<colspec colnum="9" colname="c9"/>
<colspec colnum="10" colname="c10"/>
<colspec colnum="11" colname="c11"/>
<colspec colnum="12" colname="c12"/>
<thead>
<row>
<entry align="left" colname="c1" morerows="1"><SimplePara>Name</SimplePara></entry>
<entry align="left" colname="c2" morerows="1" nameend="c3" namest="c2"><SimplePara>Participants</SimplePara></entry>
<entry align="left" colname="c4" rowsep="1" nameend="c8" namest="c4"><SimplePara>Left habenula volume</SimplePara></entry>
<entry align="left" colname="c9" rowsep="1" nameend="c12" namest="c9"><SimplePara>Right HABENULA VOLUMe</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c4"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>SD</SimplePara></entry>
<entry align="left" colname="c6" nameend="c7" namest="c6"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c8"><SimplePara>SD</SimplePara></entry>
<entry align="left" colname="c9"><SimplePara>Medial</SimplePara></entry>
<entry align="left" colname="c10"><SimplePara>SD</SimplePara></entry>
<entry align="left" colname="c11"><SimplePara>Lateral</SimplePara></entry>
<entry align="left" colname="c12"><SimplePara>SD</SimplePara></entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" colname="c1" nameend="c12" namest="c1"><SimplePara>(B) Postmortem</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c2" namest="c1"><SimplePara> Ranft et al. (<CitationRef CitationID="CR212">2010</CitationRef>)</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>13</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>3.35</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>1.33</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>27.57</SimplePara></entry>
<entry align="left" colname="c7" nameend="c8" namest="c7"><SimplePara>5.05</SimplePara></entry>
<entry align="left" colname="c9"><SimplePara>3.64</SimplePara></entry>
<entry align="left" colname="c10"><SimplePara>0.97</SimplePara></entry>
<entry align="left" colname="c11"><SimplePara>29.59</SimplePara></entry>
<entry align="left" colname="c12"><SimplePara>4.83</SimplePara></entry>
</row>
</tbody>
</tgroup>
</Table>
</Para>
<Para ID="Par20">In mammals, the habenula comprises of two functionally segregated nuclei, the medial habenula (MHb) and lateral habenula (LHb). The lateral is the larger of the two and is further divided into medial and lateral portions in humans and other mammals (Torrisi et al. <CitationRef CitationID="CR252">2017</CitationRef>; Fore et al. <CitationRef CitationID="CR77">2017</CitationRef>; Carpenter <CitationRef CitationID="CR36">1991</CitationRef>). These nuclei share many similar sources of afferent inputs and efferent nuclei but have distinct anatomy and connectivity within brain networks (Fakhoury <CitationRef CitationID="CR68">2017</CitationRef>; Bianco and Wilson <CitationRef CitationID="CR20">2009</CitationRef>; Gardon et al. <CitationRef CitationID="CR83">2014</CitationRef>).</Para>
<Section3 ID="Sec8">
<Heading>Medial habenula</Heading>
<Para ID="Par21">The medial habenula is the smaller and least studied of the two nuclei (Viswanath et al. <CitationRef CitationID="CR270">2013</CitationRef>; Iwahori <CitationRef CitationID="CR126">1977</CitationRef>; Ramon y Cajal <CitationRef CitationID="CR211">1911</CitationRef>). It borders the wall of the third ventricle and contains a more homogeneously densely packed array of cells when compared to the LHb. MHb volumes in human postmortem studies are reported in Table <InternalRef RefID="Tab2">2</InternalRef>b. The human MHb can be subdivided into five subnuclei, which can be most easily distinguished from each other in terms of cell packing density, as opposed to cell type. This is because most cells in each of the five nuclei are small round cells (Table <InternalRef RefID="Tab3">3</InternalRef>) (Diaz et al. <CitationRef CitationID="CR58">2011</CitationRef>). These cells have a soma diameter of 8.85.<Table ID="Tab3" Float="Yes">
<Caption Language="En">
<CaptionNumber>Table 3</CaptionNumber>
<CaptionContent><SimplePara>Summary of reported sub-nucleic histological characteristics of the human habenula</SimplePara></CaptionContent>
</Caption>
<tgroup cols="6">
<colspec colnum="1" colname="c1" align="left"/>
<colspec colnum="2" colname="c2" align="left"/>
<colspec colnum="3" colname="c3" align="left"/>
<colspec colnum="4" colname="c4" align="left"/>
<colspec colnum="5" colname="c5" align="left"/>
<colspec colnum="6" colname="c6" align="left"/>
<thead>
<row>
<entry align="left" colname="c1"><SimplePara>Subnuclei</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Cell shape and size</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Cellular distribution</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Fiber distribution</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Cell Packing</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>References</SimplePara></entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" colname="c1" nameend="c6" namest="c1"><SimplePara>Undifferentiated Habenula</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Ventromedial</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Very small celled, spindle shaped</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Densely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Marburg (<CitationRef CitationID="CR166">1944</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Medial</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small celled, larger and fewer cells, spindle shaped,</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Loosely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Marburg (<CitationRef CitationID="CR166">1944</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Dorsomedial</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small celled, larger and fewer cells, spindle shaped</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Loosely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Marburg (<CitationRef CitationID="CR166">1944</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Dorsolateral</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small spindle shaped and medium sized cells, polygonal, containing well-developed nuclei and trigoid bodies</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Marburg (<CitationRef CitationID="CR166">1944</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lateral</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Large celled</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>-</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Marburg (<CitationRef CitationID="CR166">1944</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c6" namest="c1"><SimplePara>Medial habenula</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Dorsal</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Heterogenous with myelinated fibers</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Few fibers, forming bundles</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Intermediately packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Medial</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Homogenous</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Few fibers and very thin</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Loosely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Intermediate</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Homogenous</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Few fibers, forming a loose network</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Densely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lateral</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Homogenous</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Few fibers and very thin</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Densely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Ventral</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round, medium round</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Homogenous</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Thin, with fibers emerging as fasciculus retroflexus</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Densely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1" nameend="c6" namest="c1"><SimplePara>Lateral habenula</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Dorsal</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>All cell types</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Heterogenous with myelinated fibers</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Many fibers, forming thick bundles</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Loosely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Medial</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round, medium round</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Heterogenous, with occasional clumping</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Very thin, reticulated pattern</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Loosely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Intermediate</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round, medium elongated, medium multipolar</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Heterogenous</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Few fibers and very thin, forming reticulated pattern</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Loosely packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Lateral</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round, small large multipolar</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Heterogenous with clumping</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Many fibers, forming a reticulated pattern</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Intermediately packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>Diaz et al. (<CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
<row>
<entry align="left" colname="c1"><SimplePara> Ventral</SimplePara></entry>
<entry align="left" colname="c2"><SimplePara>Small round, medium round and a few medium elongated</SimplePara></entry>
<entry align="left" colname="c3"><SimplePara>Heterogenous</SimplePara></entry>
<entry align="left" colname="c4"><SimplePara>Many fibers, thin, with fibers emerging as fasciculus retroflexus</SimplePara></entry>
<entry align="left" colname="c5"><SimplePara>Intermediately packed</SimplePara></entry>
<entry align="left" colname="c6"><SimplePara>(Diaz et al. <CitationRef CitationID="CR58">2011</CitationRef>)</SimplePara></entry>
</row>
</tbody>
</tgroup>
</Table>
</Para>
<Para ID="Par22">The medial habenula is richly innervated from multiple neuronal types. In animals, the predominant innervations to the MHb come from septal regions and are largely inhibitory through the action of GABAergic neurons (Torrisi et al. <CitationRef CitationID="CR252">2017</CitationRef>; Benarroch <CitationRef CitationID="CR17">2015</CitationRef>; Batalla et al. <CitationRef CitationID="CR14">2017</CitationRef>). Indeed, the medial habenula contains some of the highest concentration of GABA-B receptors in the rat brain (Wang et al. <CitationRef CitationID="CR274">2006</CitationRef>; Bischoff et al. <CitationRef CitationID="CR21">1999</CitationRef>; Durkin et al. <CitationRef CitationID="CR63">1999</CitationRef>; Charles et al. <CitationRef CitationID="CR39">2001</CitationRef>). However, other afferents terminate as cholinergic (Contestabile and Fonnum <CitationRef CitationID="CR48">1983</CitationRef>), substance P (Contestabile et al. <CitationRef CitationID="CR49">1987</CitationRef>) and glutamate (Qin and Luo <CitationRef CitationID="CR208">2009</CitationRef>). Additionally, the medial habenula abundantly expresses nicotinic acetylcholine receptors (Sheffield et al. <CitationRef CitationID="CR231">2000</CitationRef>). Monoamine inputs such as serotonin (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>), noradrenaline (Gottesfeld <CitationRef CitationID="CR88">1983</CitationRef>) and dopamine (Phillipson and Pycock <CitationRef CitationID="CR200">1982</CitationRef>) also target the MHb through feedback projections from the midbrain.</Para>
<Para ID="Par23">The MHb outputs extend through the core of the fasciculus retroflexus to the midbrain and hindbrain. MHb neurons are predominantly excitatory, releasing the neurotransmitters acetylcholine, substance P and glutamate (Aizawa et al. <CitationRef CitationID="CR3">2012</CitationRef>; Viswanath et al. <CitationRef CitationID="CR270">2013</CitationRef>). These neurons primarily target the serotonergic neurons of the median raphe nuclei directly or indirectly via interpeduncular nucleus (IPN) (Koppensteiner et al. <CitationRef CitationID="CR142">2016</CitationRef>; Contestabile et al. <CitationRef CitationID="CR49">1987</CitationRef>) and noradrenergic inputs from the locus coeruleus (Benarroch <CitationRef CitationID="CR17">2015</CitationRef>; Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>; Fakhoury <CitationRef CitationID="CR68">2017</CitationRef>; Bianco and Wilson <CitationRef CitationID="CR20">2009</CitationRef>). The IPN also provides feedback projections to brain areas that target the MHb such as the septal regions through the medial forebrain bundle (Hayakawa et al. <CitationRef CitationID="CR103">1981</CitationRef>) as well as the MHb itself (Benarroch <CitationRef CitationID="CR17">2015</CitationRef>). Of note, there are two principal subnuclei that can be identified using the transmitter acetylcholine in the ventral MHb and the expression of substance P in the dorsal MHb (Contestabile et al. <CitationRef CitationID="CR49">1987</CitationRef>; Hsu et al. <CitationRef CitationID="CR119">2016</CitationRef>). While they both project to the IPN, they innervate distinct structures within it (Hsu et al. <CitationRef CitationID="CR120">2014</CitationRef>).</Para>
</Section3>
<Section3 ID="Sec9">
<Heading>Lateral habenula</Heading>
<Para ID="Par24">The lateral habenula lies between the medial habenula and the thalamus. It is considerably larger than the MHb in most species and can be distinguished from the smaller structure microscopically by having a much less compacted and more heterogeneous cell population overall (Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>). The human LHb is greatly expanded compared to the MHb, with the LHb being about 8 times bigger than the MHb (Table <InternalRef RefID="other">2</InternalRef>). This suggests an increased influence of limbic and striatal afferents upon the DCSS in humans. The LHb can be further subdivided into medial LHb and lateral LHb subdomains. Five separate nuclei are observed in the LHb and these can be distinguished from each other in terms of the heterogenous cell shapes and sizes seen in the LHb as opposed to the packing density distinctions seen in the MHb (Table <InternalRef RefID="Tab3">3</InternalRef>) (Diaz et al. <CitationRef CitationID="CR58">2011</CitationRef>). The cellular organization within the LHb shows a larger degree of variability among individuals than the MHb and the distinction between nuclei is less precise; however, the broad overall cellular organization within the LHb is medial parvocellular and lateral magnocellular regions (Marburg <CitationRef CitationID="CR166">1944</CitationRef>).</Para>
<Para ID="Par25">The LHb innervations are generally more dispersed and heterogeneous than MHb afferents. Primary excitatory glutamatergic innervations originate from the prefrontal cortex, basal ganglia and lateral hypothalamus (Baker et al. <CitationRef CitationID="CR12">2016</CitationRef>; Batalla et al. <CitationRef CitationID="CR14">2017</CitationRef>). The majority of the fast-mediating excitatory transmission identified in the LHb is through the AMPA-type glutamate receptors (Meye et al. <CitationRef CitationID="CR171">2013</CitationRef>; Li et al. <CitationRef CitationID="CR158">2013</CitationRef>). The LHb receives strong inhibitory GABAergic inputs arising through long-range projections from areas such as the nucleus accumbens, diagonal band of Broca, the lateral preoptic area, substantia innominate and the ventral pallidum (Meye et al. <CitationRef CitationID="CR171">2013</CitationRef>; Benarroch <CitationRef CitationID="CR17">2015</CitationRef>). The medial globus pallidus GABA projections preferentially innervate the lateral portion of the LHb, whilst the diagonal band of Broca and lateral preoptic areas primarily target the medial portion (Herkenham and Nauta <CitationRef CitationID="CR110">1977</CitationRef>). Additionally, midbrain and hindbrain targets of the LHb provide dopaminergic (ventral tegmental area), noradrenergic (locus coeruleus) and serotonergic (median raphe nucleus) feedback projections, suggesting that dopamine, noradrenaline and serotonin have modulatory effects on the LHb (Meye et al. <CitationRef CitationID="CR171">2013</CitationRef>; Benarroch <CitationRef CitationID="CR17">2015</CitationRef>). Other inputs arise from the suprachiasmatic nucleus, providing GABA/vasopressinergic innervations into the LHb (Benarroch <CitationRef CitationID="CR17">2015</CitationRef>).</Para>
<Para ID="Par26">In spite of sharing a singular output tract, there appears to be little overlap between efferents and function of the MHb and LHb (Quina et al. <CitationRef CitationID="CR209">2015b</CitationRef>). Through the external mantle of the FR, the LHb projects to multiple monoaminergic mesencephalic areas such as the ventral tegmental area (VTA) and periaqueductal gray and rhombencephalic areas such as raphe nucleus and locus coeruleus. In rodents, there exists a structure called the rostromedial tegmental nucleus (RMTg) which is essentially an inhibitory tail (Kaufling et al. <CitationRef CitationID="CR130">2009</CitationRef>) of the VTA (Holstege <CitationRef CitationID="CR117">2009</CitationRef>). It has been shown that most glutamatergic axons from the LHb primarily target the GABAergic neurons of the VTA and RMTg, leading to an overall inhibitory effect (Brinschwitz et al. <CitationRef CitationID="CR28">2010</CitationRef>). RMTg in particular exhibits a high density of habenular efferents, despite only accounting for less than 20% of the total outputs of the LHb to the hindbrain (Quina et al. <CitationRef CitationID="CR209">2015b</CitationRef>). The RMTg inhibits the nearby dopaminergic neurons of the VTA and substantia nigra pars compacta (SNc) directly and the serotonergic neurons of the raphe nuclei indirectly (Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>; Fakhoury <CitationRef CitationID="CR68">2017</CitationRef>). This intermediary structure has not been isolated as yet in human post-mortem studies (Hétu et al. <CitationRef CitationID="CR113">2016</CitationRef>). There are also direct bilateral innervations of the LHb to the VTA, with electrical stimulation of the LHb causing direct orthodromic reduction of dopaminergic tone in the VTA and its axons to the nucleus accumbens (Ji and Shepard <CitationRef CitationID="CR128">2007</CitationRef>; Christoph et al. <CitationRef CitationID="CR41">1986</CitationRef>). Similarly, lesioning the LHb causes an increase in serotoninergic activity in the dorsal raphe by activating the local GABAergic neurons (Varga et al. <CitationRef CitationID="CR262">2003</CitationRef>; Amat et al. <CitationRef CitationID="CR7">2001</CitationRef>) Retrograde studies have also identified the median raphe, caudal dorsal raphe, and pontine central gray as LHb targets (Quina et al. <CitationRef CitationID="CR209">2015a</CitationRef>). LHb efferents also feedback to the lateral hypothalamic area, septum and several thalamus nuclei (Benarroch <CitationRef CitationID="CR17">2015</CitationRef>; Batalla et al. <CitationRef CitationID="CR14">2017</CitationRef>).</Para>
</Section3>
</Section2>
<Section2 ID="Sec10">
<Heading>Function</Heading>
<Para ID="Par27">Despite overlapping sources of connectivity, the medial and lateral habenula appear to represent largely distinct functional subcircuits within the DDCS. The MHb regulates inhibitory controls, cognition-dependent executive functions and place aversion learning (Gardon et al. <CitationRef CitationID="CR83">2014</CitationRef>). The MHb also has a role with respect to misery-fleeing behavior, stress responses, neural control of sleep and analgesia (Loonen et al. <CitationRef CitationID="CR164">2017</CitationRef>; Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>). These functions correspond with the inputs from the pleasure and motivational centers of the forebrain.</Para>
<Para ID="Par28">Although the MHb has remained largely unstudied, it is proposed that two subnuclei, the ventral and dorsal subnuclei, are largely responsible for its functions. The ventral MHb, containing cholinergic neurons, has been associated with the somatic symptoms of nicotine withdrawal by inhibiting serotonin and dopamine within the IPN (Zhao-Shea et al. <CitationRef CitationID="CR290">2013</CitationRef>; Lee et al. <CitationRef CitationID="CR154">2019</CitationRef>). Whereas, the substance P containing dorsal MHb is implicated in fear responses (Lee et al. <CitationRef CitationID="CR154">2019</CitationRef>). A study in rodents demonstrated a reduction in activity of the dorsal medial habenula with fear conditioning. The authors suggested that diminished MHb may result due to interference with medial raphe nucleus activity, including hippocampal ripple activity and fear memory consolidation (Koppensteiner et al. <CitationRef CitationID="CR142">2016</CitationRef>).</Para>
<Para ID="Par29">The LHb is involved in rewards signals, aversion and behavioral avoidance (Gardon et al. <CitationRef CitationID="CR83">2014</CitationRef>). These functions were first suggested following studies which revealed that the habenula was involved in reward through brain stimulation (Boyd and Celso <CitationRef CitationID="CR27">1970</CitationRef>). With the LHb long considered as the ‘missing link’ in the mechanisms of reward pathways (Brinschwitz et al. <CitationRef CitationID="CR28">2010</CitationRef>), efforts have been made to further uncover its exact functionality and underlying mechanisms. Studies in the lamprey show that when there is rewarding behavior, the LHb promotes the behaviour by intensifying stimulation of the phylogenetic homolog of the VTA (Loonen et al. <CitationRef CitationID="CR164">2017</CitationRef>). However, when the reward is smaller than expected or absent, the behavior is inhibited by affecting the VTA equivalent. Furthermore, the habenula has been implicated in circadian behaviour due to its connections with the nearby pineal and suprachiasmatic nucleus, with both MHb and in particular LHb cells showing increased firing during the day than night (Zhao and Rusak <CitationRef CitationID="CR289">2005</CitationRef>).</Para>
<Para ID="Par30">Peptidomic analysis has identified a total of 262 and 177 neuropeptides in the medial and lateral habenula, respectively, with 126 present in both regions (Yang et al. <CitationRef CitationID="CR284">2018</CitationRef>). One of the peptides identified was somatostatin, often associated with chronic stress. Previously, stressed rats were reported to have significantly upregulated somatostatin receptors on the medial habenula (Faron-Górecka et al. <CitationRef CitationID="CR71">2016</CitationRef>). Additionally, multiple pain-related peptides (nociception, pro-enkephalin-A, pro-dynorphin-related prohormones) were also detected (Yang et al. <CitationRef CitationID="CR284">2018</CitationRef>). These peptides are involved in pain signaling mechanisms through the binding of opioid and nociception receptors. Such findings are consistent with current literature on habenular involvement in pain and analgesia (Shelton et al. <CitationRef CitationID="CR232">2012a</CitationRef>; Levins et al. <CitationRef CitationID="CR156">2019</CitationRef>).</Para>
<Para ID="Par31">Significant findings from these extensive studies conducted in animals have led to investigations of the habenula in humans. All studies investigating the function of the human habenula have taken place using magnetic resonance imaging. Imaging the habenula suffers from resolution issues due to the size and shape of the structure and the resolution of standard functional MRI imaging. Also, due to position and shape, imaging this structure is further complicated as a result of its proximity to the third ventricle and subsequent partial volume effects. As such functional imaging studies of this structure are small in number and limited in scope. However, the habenula has been implicated in processing aversive stimuli (Lawson et al. <CitationRef CitationID="CR153">2014</CitationRef>; Hennigan et al. <CitationRef CitationID="CR107">2015</CitationRef>)and error detection (Ullsperger and von Cramon <CitationRef CitationID="CR258">2003</CitationRef>; Li et al. <CitationRef CitationID="CR157">2008</CitationRef>; Salas et al. <CitationRef CitationID="CR221">2010</CitationRef>; Ide and Li <CitationRef CitationID="CR125">2011</CitationRef>). The human habenula has been found to be functionally coupled with the insula, septum, thalamus, striatum, pons, substantia nigra/ventral tegmental area, periaqueductal gray, stria terminalis and parahippocampal regions (Hétu et al. <CitationRef CitationID="CR113">2016</CitationRef>; Torrisi et al. <CitationRef CitationID="CR252">2017</CitationRef>). The structure has also been functionally linked with pain responses (Shelton et al. <CitationRef CitationID="CR233">2012b</CitationRef>) subclinical depressive symptoms (Ely et al. <CitationRef CitationID="CR66">2016</CitationRef>), and anxious thoughts (Najafi et al. <CitationRef CitationID="CR187">2017</CitationRef>) in normal individuals. A promising new field of clinical research examining the habenula is underway with many studies implicating this diminutive structure in depression (Lawson et al. <CitationRef CitationID="CR152">2017</CitationRef>; Schmidt et al. <CitationRef CitationID="CR228">2017</CitationRef>), anxiety (Savitz et al. <CitationRef CitationID="CR225">2011a</CitationRef>), schizophrenia (Shepard et al. <CitationRef CitationID="CR235">2006</CitationRef>), frontotemporal dementia (Bocchetta et al. <CitationRef CitationID="CR26">2016</CitationRef>), addictions (Curtis et al. <CitationRef CitationID="CR56">2017</CitationRef>; Rose et al. <CitationRef CitationID="CR220">2017</CitationRef>) and chronic pain (Erpelding et al. <CitationRef CitationID="CR67">2014</CitationRef>), cancer-associated weight loss (Maldonado et al. <CitationRef CitationID="CR165">2018</CitationRef>) and Parkinson’s disease (Markovic et al. <CitationRef CitationID="CR167">2017</CitationRef>).</Para>
<Section3 ID="Sec11">
<Heading>Habenular asymmetry</Heading>
<Section4 ID="Sec12">
<Heading>Habenula</Heading>
<Para ID="Par32">Many species exhibit asymmetries in size, anatomical organization and function (Schmidt and Pasterkamp <CitationRef CitationID="CR227">2017</CitationRef>; Bianco and Wilson <CitationRef CitationID="CR20">2009</CitationRef>; Concha and Ahumada-Galleguillos <CitationRef CitationID="CR43">2016</CitationRef>; Dreosti et al. <CitationRef CitationID="CR62">2014</CitationRef>; Ichijo et al. <CitationRef CitationID="CR122">2015</CitationRef>). The significance of this is unknown; however, an intriguing functional impact of left–right habenular differences has been found in zebrafish (Dreosti et al. <CitationRef CitationID="CR62">2014</CitationRef>; Krishnan et al. <CitationRef CitationID="CR144">2014</CitationRef>; Ichijo et al. <CitationRef CitationID="CR123">2017</CitationRef>; Halpern et al. <CitationRef CitationID="CR101">2003</CitationRef>) and in mice (Ichijo et al. <CitationRef CitationID="CR122">2015</CitationRef>, <CitationRef CitationID="CR123">2017</CitationRef>). In Zebrafish, lateralization appears more structurally fixed (Ichijo et al. <CitationRef CitationID="CR123">2017</CitationRef>), with habenular neurons shown to respond to light more frequently on the left; whereas, responses to odor were more likely to be found in the right habenula (Dreosti et al. <CitationRef CitationID="CR62">2014</CitationRef>). Meanwhile, in mice LHb lateralization appears more functionally flexible and occurs during postnatal development and in response to water-immersion restraint stress (Ichijo et al. <CitationRef CitationID="CR122">2015</CitationRef>, <CitationRef CitationID="CR123">2017</CitationRef>). However, small volume differences have also been described in mammals, including small asymmetries in the LHb in mice (Zilles et al. <CitationRef CitationID="CR291">1976</CitationRef>) and the MHb in rats (Wree et al. <CitationRef CitationID="CR279">1981</CitationRef>). Interestingly, a unique clump of cells has also been described on the left habenula only in the macrosomatic mole (Kemali <CitationRef CitationID="CR132">1984</CitationRef>).</Para>
<Para ID="Par33">In primates and humans, the study of subtle habenular volume asymmetry is more difficult due to the small relative size of the habenula and its internal position deep within the brain. However, left–right asymmetry appears to occur in the lateral habenula in humans (independent of age, brain weight and total habenular size) and is more prominent in women (Ahumada-Galleguillos et al. <CitationRef CitationID="CR1">2017</CitationRef>). There also appears to be a functional asymmetry in the human habenula as evidenced by apparent differences in connectivity between left and right habenulae with the left habenula more coupled with the right parahippocampal regions and the right habenula more coupled with the substantia nigra/ventral tegmental regions (Hétu et al. <CitationRef CitationID="CR113">2016</CitationRef>). Additionally, a high-resolution volumetric MR study found a trend (but not of significance) towards a larger left habenula volume in both healthy controls and patients with depression and bipolar affective disorder (Savitz et al. <CitationRef CitationID="CR226">2011b</CitationRef>).</Para>
</Section4>
</Section3>
</Section2>
</Section1>
<Section1 ID="Sec13">
<Heading>Fasciculus retroflexus</Heading>
<Para ID="Par34">(Lt; <Emphasis Type="Italic">backwards turning bunch/bundle</Emphasis>) The fasciculus retroflexus, also known as the fasciculus retroflexus of Meynert, habenulointerpeduncular tract, habenulopeduncular tract or retroflex tract, is the final component of the DDCS and principal efferent of the habenula, running ventrally from the habenula to the ventral midbrain and hindbrain (Aizawa et al. <CitationRef CitationID="CR2">2011</CitationRef>). Although originally described in 1872 as a tract originating from the habenula by Meynert (<CitationRef CitationID="CR172">1872</CitationRef>), Van Gehuchten was the first to define its distal end as joining the IPN (Van Gehuchten <CitationRef CitationID="CR261">1894</CitationRef>). Similar to the SM, the FR is also bidirectional tract and contains fibers originating from both the lateral and medial habenula (Herkenham <CitationRef CitationID="CR109">1981</CitationRef>).</Para>
<Section2 ID="Sec14">
<Heading>Anatomy</Heading>
<Para ID="Par35">Although described since 1892 by Meynert, specific anatomical information regarding the precise trajectory of this tract in humans is sparse. This is due to the bending nature of the tract as well as the fact that it traverses a particularly structurally dense white matter region of the midbrain. Overall, the FR appears to take a lyre shape as it descends from the habenula to the IPN (Naidich and Duvernoy <CitationRef CitationID="CR186">2009</CitationRef>). In contrast to rats, where MHb fibers directly join the FR, human MHb fibers initially travel along the ventral part of the LHb before descending to unite with the FR (Díaz et al. <CitationRef CitationID="CR59">2011</CitationRef>). From the ventral aspect of the LHb, the FR travels down through the caudal thalamus, remaining medial to the centromedial nuclei (Naidich and Duvernoy <CitationRef CitationID="CR186">2009</CitationRef>). It then curves medially, continuing ventrally in front of the pretectal area along the rostromedial border of the red nucleus, penetrating the nucleus near its rostral pole. At the level of the basal plate, it subsequently turns at 90° caudally, to enter the IPN beneath the red nucleus. The abrupt change in direction is what gives this tract its name (retroflexus meaning recurve) Note that the FR enters the IPN from its rostral and dorsal borders (Naidich and Duvernoy <CitationRef CitationID="CR186">2009</CitationRef>). The fibers here cross and recross the midline IPN several times forming a figure eight pattern (Morley <CitationRef CitationID="CR181">1986</CitationRef>). Here they generate synapsis and appear to innervate both the ipsilatral and contralateral IPN (Contestabile and Flumerfelt <CitationRef CitationID="CR50">1981</CitationRef>; Moreno-Bravo et al. <CitationRef CitationID="CR177">2016</CitationRef>). An ill-defined nucleus of the interpeduncular tract has been documented in both animals (Rioch <CitationRef CitationID="CR215">1931</CitationRef>) and humans (Marburg <CitationRef CitationID="CR166">1944</CitationRef>). This nucleus consists of scattered neurons that lie between the medial and lateral parts of the tract and is of unknown function or significance.</Para>
<Para ID="Par36">Structurally, the FR consists of two concentric regions. A bundle of very thin unmyelinated axons originating exclusively from the MHb travel through its core, and terminate after criss-crossing in both the contra and ipsilateral interpeduncular nuclei (Benarroch <CitationRef CitationID="CR17">2015</CitationRef>; Herkenham and Nauta <CitationRef CitationID="CR111">1979</CitationRef>; Moreno-Bravo et al. <CitationRef CitationID="CR177">2016</CitationRef>). Axons arising from the individual MHb subnuclei project down to specific regions of the IPN; dorsal MHb axons project to the lateral IPN, medial MHb axons to the ventral IPN, and lateral MHb axons to the dorsal IPN (Herkenham and Nauta <CitationRef CitationID="CR111">1979</CitationRef>; Ichijo and Toyama <CitationRef CitationID="CR124">2015</CitationRef>; Koppensteiner et al. <CitationRef CitationID="CR142">2016</CitationRef>). Projections from MHb to IPN decrease caudally, with no afferents of the MHb reaching the caudal pole of the IPN (Contestabile and Flumerfelt <CitationRef CitationID="CR50">1981</CitationRef>). The ventral MHb contains cholinergic neurons (Aizawa et al. <CitationRef CitationID="CR3">2012</CitationRef>) and the dorsal MHb contain Substance P neurons of the dorsal MHb (Contestabile et al. <CitationRef CitationID="CR49">1987</CitationRef>). The thicker myelinated fibers on the outer (mantle) FR emerge from the LHb (Benarroch <CitationRef CitationID="CR17">2015</CitationRef>; Herkenham <CitationRef CitationID="CR109">1981</CitationRef>), and to terminate directly in multiple monoaminergic nuclei including the ventral tegmental area, raphe nuclei, ventral periaqueductal gray and reticular formation. Note that the FR does not just consist of habenular efferents. Similar to other animals, the human FR also contains thalamic (pulvinar/midline nuclear group) fibers as well as ascending tectum fibers (Marburg <CitationRef CitationID="CR166">1944</CitationRef>).</Para>
</Section2>
<Section2 ID="Sec15">
<Heading>Function</Heading>
<Para ID="Par37">Information relayed from the SM through the habenula is ultimately transmitted through the FR (Batalla et al. <CitationRef CitationID="CR14">2017</CitationRef>) to the brainstem. Little specific information is available from human studies on the exact connectivity and function of the FR and as such most of its function is inferred from animal studies. Broadly speaking, the FR participates in inhibitory control of monoaminergic regions (Ellison <CitationRef CitationID="CR65">2002</CitationRef>).</Para>
<Para ID="Par38">The core of the FR (i.e., originating from the MHb) is the principal cholinergic input of the interpeduncular nucleus (Hattori et al. <CitationRef CitationID="CR102">1977</CitationRef>). The IPN is well known for its widespread connections including ascending projections to the limbic system (hippocampus, entorhinal cortex and septal areas) and descending projections to the brainstem monoaminergic regions (VTA, raphe and periaqueductal gray) (Morley <CitationRef CitationID="CR181">1986</CitationRef>). The IPN outputs that synapse with these modulatory regions are GABAergic (Lima et al. <CitationRef CitationID="CR161">2017</CitationRef>). As such the MHb through the FR core exerts tonic inhibitory control on ascending monoaminergic neurons (Nishikawa et al. <CitationRef CitationID="CR191">1986</CitationRef>). Blocking muscarinic cholinergic transmission in the IPN results in increased levels of dopamine metabolism in more frontal areas such as the medial prefrontal cortex and nucleus accumbens (Nishikawa et al. <CitationRef CitationID="CR191">1986</CitationRef>). Bilateral lesioning of the FR in mice demonstrated a chronic increase in serotonin, noradrenaline and dopamine in the IPN (Takishita et al. <CitationRef CitationID="CR249">1990</CitationRef>). Following lesioning, there was evidence of hyperinnervation of the IPN by the afferent fibers from the locus coeruleus (NA) (Battisti et al. <CitationRef CitationID="CR15">1987</CitationRef>), raphe nucleus (serotonin) and other central areas (Takishita et al. <CitationRef CitationID="CR249">1990</CitationRef>). This progressive alteration in monoamines within the IPN is suggested to be implicated in cognitive processes, specifically the deterioration of choice accuracy (Bianco and Wilson <CitationRef CitationID="CR20">2009</CitationRef>).</Para>
<Para ID="Par39">The FR mediates most of the negative feedback between the dopamine-receiving forebrain and the dopamine-releasing brainstem through the lateral habenula (Ellison <CitationRef CitationID="CR65">2002</CitationRef>). Continuous injections of dopaminergics, such as cocaine, MDMA, cathinone and amphetamine, in animals induced degeneration of the FR, particularly the outer sheath (Ellison <CitationRef CitationID="CR65">2002</CitationRef>). The disintegration of the FR may also underlie the development of progressive neuropsychiatric effects associated with repeated binges in addiction disorders, including paranoia (Carlson et al. <CitationRef CitationID="CR35">2000</CitationRef>; Ellison <CitationRef CitationID="CR64">1994</CitationRef>).</Para>
<Para ID="Par40">Studies have demonstrated that the fasciculus retroflexus also has reciprocal ascending monoaminergic axons targeting the habenula (Smaha and Kaelber <CitationRef CitationID="CR240">1973</CitationRef>; Skagerberg et al. <CitationRef CitationID="CR239">1984</CitationRef>; Li et al. <CitationRef CitationID="CR159">1993</CitationRef>). These axons are confined to the outer sheath of the FR and as such specifically connect with the lateral habenula (Skagerberg et al. <CitationRef CitationID="CR239">1984</CitationRef>). The FR provides dense DA innervations to the LHb, particularly its medial region, from the VTA and substantia nigra pars compacts (Skagerberg et al. <CitationRef CitationID="CR239">1984</CitationRef>; Li et al. <CitationRef CitationID="CR159">1993</CitationRef>; Shen et al. <CitationRef CitationID="CR234">2012</CitationRef>). Previous literature suggest that DA has an inhibitory role in LHb and potentially is involved in the regulation of the habenular response to aversive and painful stimuli (Brown and Shepard <CitationRef CitationID="CR29">2013</CitationRef>; Shen et al. <CitationRef CitationID="CR234">2012</CitationRef>). Lesions of the FR weakened the density of dopaminergic nerve terminals in the LHb in rats (Shen et al. <CitationRef CitationID="CR234">2012</CitationRef>; Skagerberg et al. <CitationRef CitationID="CR239">1984</CitationRef>), indicating that the FR must be intact to transmit positive reward signals from the brainstem dopaminergic system to the LHb.</Para>
</Section2>
</Section1>
<Section1 ID="Sec16">
<Heading>Development</Heading>
<Para ID="Par41">As the name suggests, the DDCS is embryologically part of the diencephalon, a prosencephalic (forebrain) structure between the telencephalon and mesen- and rhombencephalon. Indeed, the main function of the DDCS components are as processing conduits to relay information between telencephalic and mesen/rhombencephalic structures. Similar to the development of other epithalamic gray matter structures, initially the habenular nuclei form early on, closely followed by their efferent and then followed by their afferent connections (Cho et al. <CitationRef CitationID="CR40">2014</CitationRef>; Altman and Bayer <CitationRef CitationID="CR6">1979</CitationRef>).</Para>
<Para ID="Par42">The diencephalon is formed of distinct segments, prosomeres (p1, p2 and p3) and neuromeres (D1, D2, D3, and D4), with circumferential axonal tracts forming around the neuromere boundaries (Funato et al. <CitationRef CitationID="CR79">2000</CitationRef>). The habenula forms from the alar plate of p2 (Schmidt and Pasterkamp <CitationRef CitationID="CR227">2017</CitationRef>), the SM is formed along D2 (Lim and Golden <CitationRef CitationID="CR160">2007</CitationRef>) and the FR is formed along the p1/p2 boundary (Funato et al. <CitationRef CitationID="CR79">2000</CitationRef>). Axon guidance molecules are expressed in adjacent neuromeres guiding the axonal growth (Funato et al. <CitationRef CitationID="CR79">2000</CitationRef>). Among these molecules is the repulsive axon guidance molecule Sema3F. This is found in the diencephalon and is expressed in p1, leading to repulsion from habenular explants. Whereas Netrin-1, an attractant, is expressed from the caudal to the ventral regions of the diencephalon (Funato et al. <CitationRef CitationID="CR79">2000</CitationRef>).</Para>
<Para ID="Par43">The larger neurons of the lateral nucleus develop before the smaller neurons of the medial nucleus in rodents (Angevine <CitationRef CitationID="CR9">1970</CitationRef>), resulting in the establishment of a clear latero-medial or “outside-in” progression. This gradient appears to exist both across the whole habenula and within each lateral and medial habenular nuclei (Altman and Bayer <CitationRef CitationID="CR6">1979</CitationRef>). In humans, habenular cytogenesis starts around the fifth week and is completed by approximately weeks 7–8 (Muller and O'Rahilly <CitationRef CitationID="CR183">1997</CitationRef>) with the habenular commissure also present in most embryos by the start of the eighth week (Muller and O'Rahilly <CitationRef CitationID="CR182">1990</CitationRef>).</Para>
<Para ID="Par44">The efferent white matter FR is characterized by immediate growth of axons from the developing habenula, with the FR extending towards the mesen/rhombencephalon and rapidly reaching the interpeduncular nucleus around the end of week 6. The relationship of the FR and the parvocellular red nucleus is variable during development (Cho et al. <CitationRef CitationID="CR40">2014</CitationRef>); however, the newly formed tract appears to migrate gradually towards the red nucleus to lodge into a deep groove on the medial aspect of the red nucleus sometime after week 12 (Yamaguchi and Goto <CitationRef CitationID="CR281">2008</CitationRef>). Embryologically, the FR appears to develop its complex trajectory along three decision points: (1) repulsive signals <Emphasis Type="Italic">Sema3F</Emphasis> and <Emphasis Type="Italic">Sema5A</Emphasis> complement the attractive signal <Emphasis Type="Italic">Netrin1</Emphasis> to funnel the developing FR along a corridor in front of the pretectum allowing dorsoventral extension from the habenula, (2) sudden retroflexion caudally due to <Emphasis Type="Italic">Slit1</Emphasis> repulsion from the floor plate, and (3) finally criss-crossing across the IPN complexes (Moreno-Bravo et al. <CitationRef CitationID="CR177">2016</CitationRef>). Myelination of the FR occurs much later in development, with completion sometime after 35 weeks (Yamaguchi and Goto <CitationRef CitationID="CR281">2008</CitationRef>). Similar to other epithalamic structures, the afferent tract develops slightly later, with the SM forming from the telencephalic nuclei and eventually reaching the habenula around week 8 (Muller and O'Rahilly <CitationRef CitationID="CR182">1990</CitationRef>).</Para>
</Section1>
<Section1 ID="Sec17">
<Heading>Conclusion</Heading>
<Para ID="Par45">This is the first review to describe in-depth all the components of the dorsal diencephalic conduction system: the stria medullaris, habenula and fasciculus retroflexus. The anatomy and connections of the DDCS reflect its function as an integrator of reward, motivational, cognitive and emotional information from diffuse basal forebrain regions within the habenular relay. From this hub, habenular outputs can modulate the regulatory brainstem regions. Despite the potential importance of this circuit in neuropsychiatric disorders, this review highlights the clear lack of human studies into the DDCS and its components in humans. What is known of the human DDCS appears inconsistent, particularly the specific networks of the habenular afferents and efferents. While there is an abundance of animal studies on the DDCS connections, there has been just one study that has physically traced the connections in humans (Marburg <CitationRef CitationID="CR166">1944</CitationRef>), as such it is not clear whether many of these animal networks map accurately onto the larger human forebrain (Herculano-Houzel <CitationRef CitationID="CR108">2009</CitationRef>). Furthermore, habenular function in humans has not been clearly defined, specifically with regards to the functional importance of known habenular laterality (Hétu et al. <CitationRef CitationID="CR113">2016</CitationRef>), which appears to be of particular significance in other vertebrates (Ahumada-Galleguillos et al. <CitationRef CitationID="CR1">2017</CitationRef>; Concha and Ahumada-Galleguillos <CitationRef CitationID="CR43">2016</CitationRef>). The difficulty of studying such small anatomical structures in humans is without a doubt a contributor to the lack of replicable research of this system. This is particularly relevant for human in vivo studies, where imaging techniques struggle to capture the structures at current resolutions. New advances in neuroimaging such as increased scanner strengths, image acquisition improvements, and higher-order diffusion tractography (Tournier et al. <CitationRef CitationID="CR253">2011</CitationRef>), functional imaging (Craddock et al. <CitationRef CitationID="CR53">2015</CitationRef>) and magnetic resonance spectroscopy protocol refinements (Drago et al. <CitationRef CitationID="CR61">2018</CitationRef>) may aid future investigations into the structure and function of the DDCS in humans in vivo. Additionally, more human post-mortem studies using established (e.g., DiI, horseradish peroxidase) (Von Bartheld et al. <CitationRef CitationID="CR271">1990</CitationRef>; Schmued <CitationRef CitationID="CR229">1994</CitationRef>; Tardif and Clarke <CitationRef CitationID="CR250">2001</CitationRef>) and pioneering neurotracing methods (e.g., viral tracers) (Schmued <CitationRef CitationID="CR230">2016</CitationRef>; Lai et al. <CitationRef CitationID="CR147">2018</CitationRef>) to determine the diffuse basal forebrain connections of the DDCS neurocircuitry are needed to reveal the complicated habenular connectome. Further exploration of this pivotal system may progress our insight into the pathophysiology of many neuropsychiatric disorders, particularly major depressive disorders, anxiety disorders, addiction and pain disorders, and open novel therapeutics targets for investigation.</Para>
</Section1>
</Body>
<BodyRef FileRef="406_2020_1128_OnlinePDF.pdf" TargetType="OnlinePDF"/>
<ArticleBackmatter>
<Bibliography ID="Bib1">
<Heading>References</Heading>
<Citation ID="CR1">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Ahumada-Galleguillos</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CG</Initials>
<FamilyName>Lemus</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Diaz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Osorio-Reich</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Hartel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>ML</Initials>
<FamilyName>Concha</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Directional asymmetry in the volume of the human habenula</ArticleTitle>
<JournalTitle>Brain Struct Funct</JournalTitle>
<VolumeID>222</VolumeID>
<IssueID>2</IssueID>
<FirstPage>1087</FirstPage>
<LastPage>1092</LastPage>
<BibArticleDOI>10.1007/s00429-016-1231-z</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ahumada-Galleguillos P, Lemus CG, Diaz E, Osorio-Reich M, Hartel S, Concha ML (2017) Directional asymmetry in the volume of the human habenula. Brain Struct Funct 222(2):1087–1092. <ExternalRef>
<RefSource>https://doi.org/10.1007/s00429-016-1231-z</RefSource>
<RefTarget Address="10.1007/s00429-016-1231-z" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR2">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Aizawa</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Amo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Okamoto</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Phylogeny and ontogeny of the habenular structure</ArticleTitle>
<JournalTitle>Front Neurosci</JournalTitle>
<VolumeID>5</VolumeID>
<FirstPage>138</FirstPage>
<BibArticleDOI>10.3389/fnins.2011.00138</BibArticleDOI>
</BibArticle>
<BibUnstructured>Aizawa H, Amo R, Okamoto H (2011) Phylogeny and ontogeny of the habenular structure. Front Neurosci 5:138. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnins.2011.00138</RefSource>
<RefTarget Address="10.3389/fnins.2011.00138" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR3">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Aizawa</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kobayashi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Tanaka</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Fukai</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Okamoto</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Molecular characterization of the subnuclei in rat habenula</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>520</VolumeID>
<IssueID>18</IssueID>
<FirstPage>4051</FirstPage>
<LastPage>4066</LastPage>
<BibArticleDOI>10.1002/cne.23167</BibArticleDOI>
</BibArticle>
<BibUnstructured>Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520(18):4051–4066. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.23167</RefSource>
<RefTarget Address="10.1002/cne.23167" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR4">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Akagi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EW</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<Year>1968</Year>
<ArticleTitle Language="En">Differential projections of habenular nuclei</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>132</VolumeID>
<IssueID>2</IssueID>
<FirstPage>263</FirstPage>
<LastPage>274</LastPage>
<BibArticleDOI>10.1002/cne.901320204</BibArticleDOI>
</BibArticle>
<BibUnstructured>Akagi K, Powell EW (1968) Differential projections of habenular nuclei. J Comp Neurol 132(2):263–274. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901320204</RefSource>
<RefTarget Address="10.1002/cne.901320204" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR5">
<BibArticle>
<BibAuthorName>
<Initials>LS</Initials>
<FamilyName>Allen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RA</Initials>
<FamilyName>Gorski</FamilyName>
</BibAuthorName>
<Year>1991</Year>
<ArticleTitle Language="En">Sexual dimorphism of the anterior commissure and massa intermedia of the human brain</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>312</VolumeID>
<IssueID>1</IssueID>
<FirstPage>97</FirstPage>
<LastPage>104</LastPage>
<BibArticleDOI>10.1002/cne.903120108</BibArticleDOI>
</BibArticle>
<BibUnstructured>Allen LS, Gorski RA (1991) Sexual dimorphism of the anterior commissure and massa intermedia of the human brain. J Comp Neurol 312(1):97–104. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.903120108</RefSource>
<RefTarget Address="10.1002/cne.903120108" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR6">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Altman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SA</Initials>
<FamilyName>Bayer</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>188</VolumeID>
<IssueID>3</IssueID>
<FirstPage>455</FirstPage>
<LastPage>471</LastPage>
</BibArticle>
<BibUnstructured>Altman J, Bayer SA (1979) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188(3):455–471</BibUnstructured>
</Citation>
<Citation ID="CR7">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Amat</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Sparks</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Matus-Amat</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Griggs</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Watkins</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Maier</FamilyName>
</BibAuthorName>
<Year>2001</Year>
<ArticleTitle Language="En">The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>917</VolumeID>
<IssueID>1</IssueID>
<FirstPage>118</FirstPage>
<LastPage>126</LastPage>
</BibArticle>
<BibUnstructured>Amat J, Sparks P, Matus-Amat P, Griggs J, Watkins L, Maier S (2001) The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 917(1):118–126</BibUnstructured>
</Citation>
<Citation ID="CR8">
<BibArticle>
<BibAuthorName>
<Initials>CH</Initials>
<FamilyName>Anderson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CL</Initials>
<FamilyName>Shen</FamilyName>
</BibAuthorName>
<Year>1980</Year>
<ArticleTitle Language="En">Efferents of the medial preoptic area in the guinea pig: an autoradiographic study</ArticleTitle>
<JournalTitle>Brain Res Bull</JournalTitle>
<VolumeID>5</VolumeID>
<IssueID>3</IssueID>
<FirstPage>257</FirstPage>
<LastPage>265</LastPage>
</BibArticle>
<BibUnstructured>Anderson CH, Shen CL (1980) Efferents of the medial preoptic area in the guinea pig: an autoradiographic study. Brain Res Bull 5(3):257–265</BibUnstructured>
</Citation>
<Citation ID="CR9">
<BibArticle>
<BibAuthorName>
<Initials>JB</Initials>
<FamilyName>Angevine</FamilyName>
<Suffix>Jr</Suffix>
</BibAuthorName>
<Year>1970</Year>
<ArticleTitle Language="En">Time of neuron origin in the diencephalon of the mouse. An autoradiographic study</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>139</VolumeID>
<IssueID>2</IssueID>
<FirstPage>129</FirstPage>
<LastPage>187</LastPage>
</BibArticle>
<BibUnstructured>Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139(2):129–187</BibUnstructured>
</Citation>
<Citation ID="CR10">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Araki</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PL</Initials>
<FamilyName>McGeer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EG</Initials>
<FamilyName>McGeer</FamilyName>
</BibAuthorName>
<Year>1984</Year>
<ArticleTitle Language="En">Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>304</VolumeID>
<IssueID>2</IssueID>
<FirstPage>271</FirstPage>
<LastPage>277</LastPage>
</BibArticle>
<BibUnstructured>Araki M, McGeer PL, McGeer EG (1984) Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res 304(2):271–277</BibUnstructured>
</Citation>
<Citation ID="CR11">
<BibArticle>
<BibAuthorName>
<Initials>EC</Initials>
<FamilyName>Azmitia</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Segal</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>179</VolumeID>
<IssueID>3</IssueID>
<FirstPage>641</FirstPage>
<LastPage>667</LastPage>
</BibArticle>
<BibUnstructured>Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667</BibUnstructured>
</Citation>
<Citation ID="CR12">
<BibArticle>
<BibAuthorName>
<Initials>PM</Initials>
<FamilyName>Baker</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Jhou</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Li</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Matsumoto</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SJ</Initials>
<FamilyName>Mizumori</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Stephenson-Jones</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Vicentic</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">The lateral habenula circuitry: reward processing and cognitive control</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>36</VolumeID>
<IssueID>45</IssueID>
<FirstPage>11482</FirstPage>
<LastPage>11488</LastPage>
<BibArticleDOI>10.1523/JNEUROSCI.2350-16.2016</BibArticleDOI>
</BibArticle>
<BibUnstructured>Baker PM, Jhou T, Li B, Matsumoto M, Mizumori SJ, Stephenson-Jones M, Vicentic A (2016) The lateral habenula circuitry: reward processing and cognitive control. J Neurosci 36(45):11482–11488. <ExternalRef>
<RefSource>https://doi.org/10.1523/JNEUROSCI.2350-16.2016</RefSource>
<RefTarget Address="10.1523/JNEUROSCI.2350-16.2016" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR13">
<BibUnstructured>Ban T (1962) Experimental studies on the fiber connections of the rhinencephalon, 1. Med J Osaka Univ 12 (3):????<!-- Query ID="Q2" Text="Kindly provide page range for references Ban (1962); Hsu et al. (2016)." -->
</BibUnstructured>
</Citation>
<Citation ID="CR14">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Batalla</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JR</Initials>
<FamilyName>Homberg</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TV</Initials>
<FamilyName>Lipina</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Sescousse</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Luijten</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SA</Initials>
<FamilyName>Ivanova</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AFA</Initials>
<FamilyName>Schellekens</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AJM</Initials>
<FamilyName>Loonen</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">The role of the habenula in the transition from reward to misery in substance use and mood disorders</ArticleTitle>
<JournalTitle>Neurosci Biobehav Rev</JournalTitle>
<VolumeID>80</VolumeID>
<FirstPage>276</FirstPage>
<LastPage>285</LastPage>
<BibArticleDOI>10.1016/j.neubiorev.2017.03.019</BibArticleDOI>
</BibArticle>
<BibUnstructured>Batalla A, Homberg JR, Lipina TV, Sescousse G, Luijten M, Ivanova SA, Schellekens AFA, Loonen AJM (2017) The role of the habenula in the transition from reward to misery in substance use and mood disorders. Neurosci Biobehav Rev 80:276–285. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neubiorev.2017.03.019</RefSource>
<RefTarget Address="10.1016/j.neubiorev.2017.03.019" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR15">
<BibArticle>
<BibAuthorName>
<Initials>WP</Initials>
<FamilyName>Battisti</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BE</Initials>
<FamilyName>Levin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Murray</FamilyName>
</BibAuthorName>
<Year>1987</Year>
<ArticleTitle Language="En">Norepinephrine in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>418</VolumeID>
<IssueID>2</IssueID>
<FirstPage>287</FirstPage>
<LastPage>300</LastPage>
</BibArticle>
<BibUnstructured>Battisti WP, Levin BE, Murray M (1987) Norepinephrine in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation. Brain Res 418(2):287–300</BibUnstructured>
</Citation>
<Citation ID="CR16">
<BibChapter>
<BibAuthorName>
<Initials>RM</Initials>
<FamilyName>Beckstead</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>VB</Initials>
<FamilyName>Domesick</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ChapterTitle Language="En">Efferent connections of the substantia nigra and ventral tegmental area in the rat</ChapterTitle>
<BookTitle>Neuroanatomy</BookTitle>
<PublisherName>Springer</PublisherName>
<PublisherLocation>New York</PublisherLocation>
<FirstPage>449</FirstPage>
<LastPage>475</LastPage>
</BibChapter>
<BibUnstructured>Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy. Springer, New York, pp 449–475</BibUnstructured>
</Citation>
<Citation ID="CR17">
<BibArticle>
<BibAuthorName>
<Initials>EE</Initials>
<FamilyName>Benarroch</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Habenula: recently recognized functions and potential clinical relevance</ArticleTitle>
<JournalTitle>Neurology</JournalTitle>
<VolumeID>85</VolumeID>
<IssueID>11</IssueID>
<FirstPage>992</FirstPage>
<LastPage>1000</LastPage>
<BibArticleDOI>10.1212/WNL.0000000000001937</BibArticleDOI>
</BibArticle>
<BibUnstructured>Benarroch EE (2015) Habenula: recently recognized functions and potential clinical relevance. Neurology 85(11):992–1000. <ExternalRef>
<RefSource>https://doi.org/10.1212/WNL.0000000000001937</RefSource>
<RefTarget Address="10.1212/WNL.0000000000001937" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR18">
<BibArticle>
<BibAuthorName>
<Initials>CA</Initials>
<FamilyName>Beretta</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Dross</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JA</Initials>
<FamilyName>Guiterrez-Triana</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Ryu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Carl</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Habenula circuit development: past, present, and future</ArticleTitle>
<JournalTitle>Front Neurosci</JournalTitle>
<VolumeID>6</VolumeID>
<FirstPage>51</FirstPage>
<BibArticleDOI>10.3389/fnins.2012.00051</BibArticleDOI>
</BibArticle>
<BibUnstructured>Beretta CA, Dross N, Guiterrez-Triana JA, Ryu S, Carl M (2012) Habenula circuit development: past, present, and future. Front Neurosci 6:51. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnins.2012.00051</RefSource>
<RefTarget Address="10.3389/fnins.2012.00051" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR19">
<BibArticle>
<BibAuthorName>
<Initials>ML</Initials>
<FamilyName>Berk</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JA</Initials>
<FamilyName>Finkelstein</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation</ArticleTitle>
<JournalTitle>Brain Res Bull</JournalTitle>
<VolumeID>8</VolumeID>
<IssueID>5</IssueID>
<FirstPage>511</FirstPage>
<LastPage>526</LastPage>
</BibArticle>
<BibUnstructured>Berk ML, Finkelstein JA (1982) Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull 8(5):511–526</BibUnstructured>
</Citation>
<Citation ID="CR20">
<BibArticle>
<BibAuthorName>
<Initials>IH</Initials>
<FamilyName>Bianco</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SW</Initials>
<FamilyName>Wilson</FamilyName>
</BibAuthorName>
<Year>2009</Year>
<ArticleTitle Language="En">The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain</ArticleTitle>
<JournalTitle>Philos Trans R Soc Lond B Biol Sci</JournalTitle>
<VolumeID>364</VolumeID>
<IssueID>1519</IssueID>
<FirstPage>1005</FirstPage>
<LastPage>1020</LastPage>
<BibArticleDOI>10.1098/rstb.2008.0213</BibArticleDOI>
</BibArticle>
<BibUnstructured>Bianco IH, Wilson SW (2009) The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 364(1519):1005–1020. <ExternalRef>
<RefSource>https://doi.org/10.1098/rstb.2008.0213</RefSource>
<RefTarget Address="10.1098/rstb.2008.0213" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR21">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Bischoff</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Leonhard</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Reymann</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Schuler</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Shigemoto</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Kaupmann</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Bettler</FamilyName>
</BibAuthorName>
<Year>1999</Year>
<ArticleTitle Language="En">Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>412</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>16</LastPage>
</BibArticle>
<BibUnstructured>Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 412(1):1–16</BibUnstructured>
</Citation>
<Citation ID="CR22">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Björklund</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Owman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>West</FamilyName>
</BibAuthorName>
<Year>1972</Year>
<ArticleTitle Language="En">Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain</ArticleTitle>
<JournalTitle>Zeitschrift für Zellforschung und mikroskopische Anatomie</JournalTitle>
<VolumeID>127</VolumeID>
<IssueID>4</IssueID>
<FirstPage>570</FirstPage>
<LastPage>579</LastPage>
</BibArticle>
<BibUnstructured>Björklund A, Owman C, West K (1972) Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Zeitschrift für Zellforschung und mikroskopische Anatomie 127(4):570–579</BibUnstructured>
</Citation>
<Citation ID="CR23">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Bobillier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Pettijean</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Salvert</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Ligier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Seguin</FamilyName>
</BibAuthorName>
<Year>1975</Year>
<ArticleTitle Language="En">Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>85</VolumeID>
<IssueID>2</IssueID>
<FirstPage>205</FirstPage>
</BibArticle>
<BibUnstructured>Bobillier P, Pettijean F, Salvert D, Ligier M, Seguin S (1975) Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res 85(2):205</BibUnstructured>
</Citation>
<Citation ID="CR24">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Bobillier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Seguin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Degueurce</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Lewis</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Pujol</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>166</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>8</LastPage>
</BibArticle>
<BibUnstructured>Bobillier P, Seguin S, Degueurce A, Lewis B, Pujol J (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166(1):1–8</BibUnstructured>
</Citation>
<Citation ID="CR25">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Bobillier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Seguin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Petitjean</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Salvert</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Touret</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Jouvet</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>113</VolumeID>
<IssueID>3</IssueID>
<FirstPage>449</FirstPage>
<LastPage>486</LastPage>
</BibArticle>
<BibUnstructured>Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449–486</BibUnstructured>
</Citation>
<Citation ID="CR26">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Bocchetta</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Gordon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CR</Initials>
<FamilyName>Marshall</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CF</Initials>
<FamilyName>Slattery</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MJ</Initials>
<FamilyName>Cardoso</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DM</Initials>
<FamilyName>Cash</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Espak</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Modat</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Ourselin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>GB</Initials>
<FamilyName>Frisoni</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JM</Initials>
<FamilyName>Schott</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JD</Initials>
<FamilyName>Warren</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JD</Initials>
<FamilyName>Rohrer</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">The habenula: an under-recognized area of importance in frontotemporal dementia?</ArticleTitle>
<JournalTitle>J Neurol Neurosurg Psychiatry</JournalTitle>
<VolumeID>87</VolumeID>
<IssueID>8</IssueID>
<FirstPage>910</FirstPage>
<LastPage>912</LastPage>
<BibArticleDOI>10.1136/jnnp-2015-312067</BibArticleDOI>
</BibArticle>
<BibUnstructured>Bocchetta M, Gordon E, Marshall CR, Slattery CF, Cardoso MJ, Cash DM, Espak M, Modat M, Ourselin S, Frisoni GB, Schott JM, Warren JD, Rohrer JD (2016) The habenula: an under-recognized area of importance in frontotemporal dementia? J Neurol Neurosurg Psychiatry 87(8):910–912. <ExternalRef>
<RefSource>https://doi.org/10.1136/jnnp-2015-312067</RefSource>
<RefTarget Address="10.1136/jnnp-2015-312067" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR27">
<BibArticle>
<BibAuthorName>
<Initials>ES</Initials>
<FamilyName>Boyd</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MB</Initials>
<FamilyName>Celso</FamilyName>
</BibAuthorName>
<Year>1970</Year>
<ArticleTitle Language="En">Effect of some brain lesions on septal intracranial self-stimulation in the rat</ArticleTitle>
<JournalTitle>Am J Physiol</JournalTitle>
<VolumeID>219</VolumeID>
<IssueID>3</IssueID>
<FirstPage>734</FirstPage>
<LastPage>741</LastPage>
<BibArticleDOI>10.1152/ajplegacy.1970.219.3.734</BibArticleDOI>
</BibArticle>
<BibUnstructured>Boyd ES, Celso MB (1970) Effect of some brain lesions on septal intracranial self-stimulation in the rat. Am J Physiol 219(3):734–741. <ExternalRef>
<RefSource>https://doi.org/10.1152/ajplegacy.1970.219.3.734</RefSource>
<RefTarget Address="10.1152/ajplegacy.1970.219.3.734" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR28">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Brinschwitz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Dittgen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Madai</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Lommel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Geisler</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Veh</FamilyName>
</BibAuthorName>
<Year>2010</Year>
<ArticleTitle Language="En">Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>168</VolumeID>
<IssueID>2</IssueID>
<FirstPage>463</FirstPage>
<LastPage>476</LastPage>
</BibArticle>
<BibUnstructured>Brinschwitz K, Dittgen A, Madai V, Lommel R, Geisler S, Veh R (2010) Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168(2):463–476</BibUnstructured>
</Citation>
<Citation ID="CR29">
<BibArticle>
<BibAuthorName>
<Initials>PL</Initials>
<FamilyName>Brown</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PD</Initials>
<FamilyName>Shepard</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">Lesions of the fasciculus retroflexus alter footshock-induced cFos expression in the mesopontine rostromedial tegmental area of rats</ArticleTitle>
<JournalTitle>PLoS ONE</JournalTitle>
<VolumeID>8</VolumeID>
<IssueID>4</IssueID>
<FirstPage>e60678</FirstPage>
<BibArticleDOI>10.1371/journal.pone.0060678</BibArticleDOI>
</BibArticle>
<BibUnstructured>Brown PL, Shepard PD (2013) Lesions of the fasciculus retroflexus alter footshock-induced cFos expression in the mesopontine rostromedial tegmental area of rats. PLoS ONE 8(4):e60678. <ExternalRef>
<RefSource>https://doi.org/10.1371/journal.pone.0060678</RefSource>
<RefTarget Address="10.1371/journal.pone.0060678" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR30">
<BibUnstructured>Buchanan, Frazer JE (1937) Buchanan's manual of anatomy including embryology. In: J. E. Frazer (ed), 6th edn. Bailliere, Tindall and Cox, London</BibUnstructured>
</Citation>
<Citation ID="CR31">
<BibUnstructured>Buchanan AR, Newton EB (1948) Functional neuroanatomy: including an atlas of the brain stem.<!-- Query ID="Q3" Text="Kindly provide complete details for references Buchanan and Newton (1948); Concha et al. (2016); Cruveilhier (1836); Herrick CJ (1948); Meynert (1872); Soemmerring (1791); Tarin (1750)." -->
</BibUnstructured>
</Citation>
<Citation ID="CR32">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Buijs</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat</ArticleTitle>
<JournalTitle>Cell Tissue Res</JournalTitle>
<VolumeID>192</VolumeID>
<IssueID>3</IssueID>
<FirstPage>423</FirstPage>
<LastPage>435</LastPage>
</BibArticle>
<BibUnstructured>Buijs R (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192(3):423–435</BibUnstructured>
</Citation>
<Citation ID="CR33">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Carceller-Sindreu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Diego-Adeliño</FamilyName>
<Particle>de</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Serra-Blasco</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Vives-Gilabert</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Martín-Blanco</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Puigdemont</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Álvarez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Pérez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MJ</Initials>
<FamilyName>Portella</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Volumetric MRI study of the habenula in first episode, recurrent and chronic major depression</ArticleTitle>
<JournalTitle>Eur Neuropsychopharmacol</JournalTitle>
<VolumeID>25</VolumeID>
<IssueID>11</IssueID>
<FirstPage>2015</FirstPage>
<LastPage>2021</LastPage>
<BibArticleDOI>10.1016/j.euroneuro.2015.08.009</BibArticleDOI>
</BibArticle>
<BibUnstructured>Carceller-Sindreu M, de Diego-Adeliño J, Serra-Blasco M, Vives-Gilabert Y, Martín-Blanco A, Puigdemont D, Álvarez E, Pérez V, Portella MJ (2015) Volumetric MRI study of the habenula in first episode, recurrent and chronic major depression. Eur Neuropsychopharmacol 25(11):2015–2021. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.euroneuro.2015.08.009</RefSource>
<RefTarget Address="10.1016/j.euroneuro.2015.08.009" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR34">
<BibArticle>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Carl Huber</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EC</Initials>
<FamilyName>Crosby</FamilyName>
</BibAuthorName>
<Year>1929</Year>
<ArticleTitle Language="En">The nuclei and fiber paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centers and connections</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>48</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>225</LastPage>
</BibArticle>
<BibUnstructured>Carl Huber G, Crosby EC (1929) The nuclei and fiber paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48(1):1–225</BibUnstructured>
</Citation>
<Citation ID="CR35">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Carlson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Armstrong</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RC</Initials>
<FamilyName>Switzer Iii</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Ellison</FamilyName>
</BibAuthorName>
<Year>2000</Year>
<ArticleTitle Language="En">Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse</ArticleTitle>
<JournalTitle>Neuropharmacology</JournalTitle>
<VolumeID>39</VolumeID>
<IssueID>13</IssueID>
<FirstPage>2792</FirstPage>
<LastPage>2798</LastPage>
</BibArticle>
<BibUnstructured>Carlson J, Armstrong B, Switzer Iii RC, Ellison G (2000) Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse. Neuropharmacology 39(13):2792–2798</BibUnstructured>
</Citation>
<Citation ID="CR36">
<BibUnstructured>Carpenter MB (1991) Core text of neuroanatomy. In: 4th ed. edn. Williams &amp; Wilkins, Baltimore</BibUnstructured>
</Citation>
<Citation ID="CR37">
<BibArticle>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Carter</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Fibiger</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>177</VolumeID>
<IssueID>1</IssueID>
<FirstPage>113</FirstPage>
<LastPage>123</LastPage>
</BibArticle>
<BibUnstructured>Carter D, Fibiger H (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J Comp Neurol 177(1):113–123</BibUnstructured>
</Citation>
<Citation ID="CR38">
<BibBook>
<BibAuthorName>
<Initials>TH</Initials>
<FamilyName>Champney</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<BookTitle>Essential clinical neuroanatomy</BookTitle>
<PublisherName>Wiley</PublisherName>
<PublisherLocation>Hoboken</PublisherLocation>
</BibBook>
<BibUnstructured>Champney TH (2015) Essential clinical neuroanatomy. Wiley, Hoboken</BibUnstructured>
</Citation>
<Citation ID="CR39">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Charles</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Evans</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Robbins</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Calver</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Leslie</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Pangalos</FamilyName>
</BibAuthorName>
<Year>2001</Year>
<ArticleTitle Language="En">Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>106</VolumeID>
<IssueID>3</IssueID>
<FirstPage>447</FirstPage>
<LastPage>467</LastPage>
</BibArticle>
<BibUnstructured>Charles K, Evans M, Robbins M, Calver A, Leslie R, Pangalos M (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106(3):447–467</BibUnstructured>
</Citation>
<Citation ID="CR40">
<BibArticle>
<BibAuthorName>
<Initials>KH</Initials>
<FamilyName>Cho</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Mori</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HS</Initials>
<FamilyName>Jang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JH</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Abe</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JF</Initials>
<FamilyName>Rodriguez-Vazquez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Murakami</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">The habenulo-interpeduncular and mammillothalamic tracts: early developed fiber tracts in the human fetal diencephalon</ArticleTitle>
<JournalTitle>Childs Nerv Syst</JournalTitle>
<VolumeID>30</VolumeID>
<IssueID>9</IssueID>
<FirstPage>1477</FirstPage>
<LastPage>1484</LastPage>
<BibArticleDOI>10.1007/s00381-014-2432-5</BibArticleDOI>
</BibArticle>
<BibUnstructured>Cho KH, Mori S, Jang HS, Kim JH, Abe H, Rodriguez-Vazquez JF, Murakami G (2014) The habenulo-interpeduncular and mammillothalamic tracts: early developed fiber tracts in the human fetal diencephalon. Childs Nerv Syst 30(9):1477–1484. <ExternalRef>
<RefSource>https://doi.org/10.1007/s00381-014-2432-5</RefSource>
<RefTarget Address="10.1007/s00381-014-2432-5" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR41">
<BibArticle>
<BibAuthorName>
<Initials>GR</Initials>
<FamilyName>Christoph</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RJ</Initials>
<FamilyName>Leonzio</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KS</Initials>
<FamilyName>Wilcox</FamilyName>
</BibAuthorName>
<Year>1986</Year>
<ArticleTitle Language="En">Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>6</VolumeID>
<IssueID>3</IssueID>
<FirstPage>613</FirstPage>
<LastPage>619</LastPage>
</BibArticle>
<BibUnstructured>Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6(3):613–619</BibUnstructured>
</Citation>
<Citation ID="CR42">
<BibArticle>
<BibAuthorName>
<Initials>VA</Initials>
<FamilyName>Coenen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LV</Initials>
<FamilyName>Schumacher</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Kaller</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TE</Initials>
<FamilyName>Schlaepfer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PC</Initials>
<FamilyName>Reinacher</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Egger</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Urbach</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Reisert</FamilyName>
</BibAuthorName>
<Year>2018</Year>
<ArticleTitle Language="En">The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions</ArticleTitle>
<JournalTitle>NeuroImage Clinical</JournalTitle>
<VolumeID>18</VolumeID>
<FirstPage>770</FirstPage>
<LastPage>783</LastPage>
</BibArticle>
<BibUnstructured>Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M (2018) The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. NeuroImage Clinical 18:770–783</BibUnstructured>
</Citation>
<Citation ID="CR43">
<BibUnstructured>Concha ML, Ahumada-Galleguillos P (2016) An evolutionary perspective on habenular asymmetry in humans</BibUnstructured>
</Citation>
<Citation ID="CR44">
<BibArticle>
<BibAuthorName>
<Initials>ML</Initials>
<FamilyName>Concha</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SW</Initials>
<FamilyName>Wilson</FamilyName>
</BibAuthorName>
<Year>2001</Year>
<ArticleTitle Language="En">Asymmetry in the epithalamus of vertebrates</ArticleTitle>
<JournalTitle>J Anat</JournalTitle>
<VolumeID>199</VolumeID>
<IssueID>Pt 1–2</IssueID>
<FirstPage>63</FirstPage>
<LastPage>84</LastPage>
</BibArticle>
<BibUnstructured>Concha ML, Wilson SW (2001) Asymmetry in the epithalamus of vertebrates. J Anat 199(Pt 1–2):63–84</BibUnstructured>
</Citation>
<Citation ID="CR45">
<BibArticle>
<BibAuthorName>
<Initials>LC</Initials>
<FamilyName>Conrad</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CM</Initials>
<FamilyName>Leonard</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DW</Initials>
<FamilyName>Pfaff</FamilyName>
</BibAuthorName>
<Year>1974</Year>
<ArticleTitle Language="En">Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>156</VolumeID>
<IssueID>2</IssueID>
<FirstPage>179</FirstPage>
<LastPage>205</LastPage>
</BibArticle>
<BibUnstructured>Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol 156(2):179–205</BibUnstructured>
</Citation>
<Citation ID="CR46">
<BibArticle>
<BibAuthorName>
<Initials>LC</Initials>
<FamilyName>Conrad</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DW</Initials>
<FamilyName>Pfaff</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>169</VolumeID>
<IssueID>2</IssueID>
<FirstPage>185</FirstPage>
<LastPage>219</LastPage>
<BibArticleDOI>10.1002/cne.901690205</BibArticleDOI>
</BibArticle>
<BibUnstructured>Conrad LC, Pfaff DW (1976a) Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J Comp Neurol 169(2):185–219. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901690205</RefSource>
<RefTarget Address="10.1002/cne.901690205" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR47">
<BibArticle>
<BibAuthorName>
<Initials>LC</Initials>
<FamilyName>Conrad</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DW</Initials>
<FamilyName>Pfaff</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>169</VolumeID>
<IssueID>2</IssueID>
<FirstPage>221</FirstPage>
<LastPage>261</LastPage>
<BibArticleDOI>10.1002/cne.901690206</BibArticleDOI>
</BibArticle>
<BibUnstructured>Conrad LC, Pfaff DW (1976b) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169(2):221–261. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901690206</RefSource>
<RefTarget Address="10.1002/cne.901690206" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR48">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Contestabile</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Fonnum</FamilyName>
</BibAuthorName>
<Year>1983</Year>
<ArticleTitle Language="En">Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: surgical and kainic acid lesions</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>275</VolumeID>
<IssueID>2</IssueID>
<FirstPage>287</FirstPage>
<LastPage>297</LastPage>
</BibArticle>
<BibUnstructured>Contestabile A, Fonnum F (1983) Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: surgical and kainic acid lesions. Brain Res 275(2):287–297</BibUnstructured>
</Citation>
<Citation ID="CR49">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Contestabile</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Villani</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Fasolo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Franzoni</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Gribaudo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Øktedalen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Fonnum</FamilyName>
</BibAuthorName>
<Year>1987</Year>
<ArticleTitle Language="En">Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>21</VolumeID>
<IssueID>1</IssueID>
<FirstPage>253</FirstPage>
<LastPage>270</LastPage>
</BibArticle>
<BibUnstructured>Contestabile A, Villani L, Fasolo A, Franzoni M, Gribaudo L, Øktedalen O, Fonnum F (1987) Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach. Neuroscience 21(1):253–270</BibUnstructured>
</Citation>
<Citation ID="CR50">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Contestabile</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Flumerfelt</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>196</VolumeID>
<IssueID>2</IssueID>
<FirstPage>253</FirstPage>
<LastPage>270</LastPage>
</BibArticle>
<BibUnstructured>Contestabile R, Flumerfelt B (1981) Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat. J Comp Neurol 196(2):253–270</BibUnstructured>
</Citation>
<Citation ID="CR51">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Cornwall</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Cooper</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Phillipson</FamilyName>
</BibAuthorName>
<Year>1990</Year>
<ArticleTitle Language="En">Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat</ArticleTitle>
<JournalTitle>Brain Res Bull</JournalTitle>
<VolumeID>25</VolumeID>
<IssueID>2</IssueID>
<FirstPage>271</FirstPage>
<LastPage>284</LastPage>
</BibArticle>
<BibUnstructured>Cornwall J, Cooper J, Phillipson O (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25(2):271–284</BibUnstructured>
</Citation>
<Citation ID="CR52">
<BibArticle>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Cowan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Raisman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<Year>1965</Year>
<ArticleTitle Language="En">The connexions of the amygdala</ArticleTitle>
<JournalTitle>J Neurol Neurosurg Psychiatry</JournalTitle>
<VolumeID>28</VolumeID>
<IssueID>2</IssueID>
<FirstPage>137</FirstPage>
</BibArticle>
<BibUnstructured>Cowan W, Raisman G, Powell T (1965) The connexions of the amygdala. J Neurol Neurosurg Psychiatry 28(2):137</BibUnstructured>
</Citation>
<Citation ID="CR53">
<BibArticle>
<BibAuthorName>
<Initials>RC</Initials>
<FamilyName>Craddock</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RL</Initials>
<FamilyName>Tungaraza</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MP</Initials>
<FamilyName>Milham</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Connectomics and new approaches for analyzing human brain functional connectivity</ArticleTitle>
<JournalTitle>Gigascience</JournalTitle>
<VolumeID>4</VolumeID>
<IssueID>1</IssueID>
<FirstPage>13</FirstPage>
</BibArticle>
<BibUnstructured>Craddock RC, Tungaraza RL, Milham MP (2015) Connectomics and new approaches for analyzing human brain functional connectivity. Gigascience 4(1):13</BibUnstructured>
</Citation>
<Citation ID="CR54">
<BibArticle>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Cragg</FamilyName>
</BibAuthorName>
<Year>1961</Year>
<ArticleTitle Language="En">The connections of the habenula in the rabbit</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>3</VolumeID>
<IssueID>4</IssueID>
<FirstPage>388</FirstPage>
<LastPage>409</LastPage>
</BibArticle>
<BibUnstructured>Cragg B (1961) The connections of the habenula in the rabbit. Exp Neurol 3(4):388–409</BibUnstructured>
</Citation>
<Citation ID="CR55">
<BibUnstructured>Cruveilhier J (1836) Anatomie descriptive, vol 4. Béchet jeune,</BibUnstructured>
</Citation>
<Citation ID="CR56">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Curtis</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Viswanath</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KM</Initials>
<FamilyName>Velasquez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DL</Initials>
<FamilyName>Molfese</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MJ</Initials>
<FamilyName>Harding</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Aramayo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PR</Initials>
<FamilyName>Baldwin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Ambrosi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Madan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Patriquin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BC</Initials>
<FamilyName>Frueh</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JC</Initials>
<FamilyName>Fowler</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TR</Initials>
<FamilyName>Kosten</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DA</Initials>
<FamilyName>Nielsen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Salas</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Increased habenular connectivity in opioid users is associated with an α5 subunit nicotinic receptor genetic variant</ArticleTitle>
<JournalTitle>Am J Addict</JournalTitle>
<VolumeID>26</VolumeID>
<IssueID>7</IssueID>
<FirstPage>751</FirstPage>
<LastPage>759</LastPage>
<BibArticleDOI>10.1111/ajad.12607</BibArticleDOI>
</BibArticle>
<BibUnstructured>Curtis K, Viswanath H, Velasquez KM, Molfese DL, Harding MJ, Aramayo E, Baldwin PR, Ambrosi E, Madan A, Patriquin M, Frueh BC, Fowler JC, Kosten TR, Nielsen DA, Salas R (2017) Increased habenular connectivity in opioid users is associated with an α5 subunit nicotinic receptor genetic variant. Am J Addict 26(7):751–759. <ExternalRef>
<RefSource>https://doi.org/10.1111/ajad.12607</RefSource>
<RefTarget Address="10.1111/ajad.12607" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR57">
<BibArticle>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Díaz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Puelles</FamilyName>
</BibAuthorName>
<Year>1992</Year>
<ArticleTitle Language="En">Afferent connections of the habenular complex in the lizard <Emphasis Type="Italic">Gallotia galloti</Emphasis></ArticleTitle>
<JournalTitle>Brain Behav Evol</JournalTitle>
<VolumeID>39</VolumeID>
<IssueID>5</IssueID>
<FirstPage>312</FirstPage>
<LastPage>324</LastPage>
</BibArticle>
<BibUnstructured>Díaz C, Puelles L (1992) Afferent connections of the habenular complex in the lizard <Emphasis Type="Italic">Gallotia galloti</Emphasis>. Brain Behav Evol 39(5):312–324</BibUnstructured>
</Citation>
<Citation ID="CR58">
<BibArticle>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Diaz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Bravo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>X</Initials>
<FamilyName>Rojas</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>ML</Initials>
<FamilyName>Concha</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Morphologic and immunohistochemical organization of the human habenular complex</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>519</VolumeID>
<IssueID>18</IssueID>
<FirstPage>3727</FirstPage>
<LastPage>3747</LastPage>
<BibArticleDOI>10.1002/cne.22687</BibArticleDOI>
</BibArticle>
<BibUnstructured>Diaz E, Bravo D, Rojas X, Concha ML (2011) Morphologic and immunohistochemical organization of the human habenular complex. J Comp Neurol 519(18):3727–3747. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.22687</RefSource>
<RefTarget Address="10.1002/cne.22687" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR59">
<BibArticle>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Díaz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Bravo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>X</Initials>
<FamilyName>Rojas</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>ML</Initials>
<FamilyName>Concha</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Morphologic and immunohistochemical organization of the human habenular complex</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>519</VolumeID>
<IssueID>18</IssueID>
<FirstPage>3727</FirstPage>
<LastPage>3747</LastPage>
<BibArticleDOI>10.1002/cne.22687</BibArticleDOI>
</BibArticle>
<BibUnstructured>Díaz E, Bravo D, Rojas X, Concha ML (2011) Morphologic and immunohistochemical organization of the human habenular complex. J Comp Neurol 519(18):3727–3747. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.22687</RefSource>
<RefTarget Address="10.1002/cne.22687" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR60">
<BibArticle>
<BibAuthorName>
<Initials>HW</Initials>
<FamilyName>Dong</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LW</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>2006</Year>
<ArticleTitle Language="En">Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>494</VolumeID>
<IssueID>1</IssueID>
<FirstPage>142</FirstPage>
<LastPage>178</LastPage>
</BibArticle>
<BibUnstructured>Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494(1):142–178</BibUnstructured>
</Citation>
<Citation ID="CR61">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Drago</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PW</Initials>
<FamilyName>O’Regan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>I</Initials>
<FamilyName>Welaratne</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Rooney</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>O’Callaghan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Malkit</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Roman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KJ</Initials>
<FamilyName>Levins</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Alexander</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Barry</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>O'Hanlon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>O'Keane</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Roddy</FamilyName>
</BibAuthorName>
<Year>2018</Year>
<ArticleTitle Language="En">A comprehensive regional neurochemical theory in depression: a protocol for the systematic review and meta-analysis of 1H-MRS studies in major depressive disorder</ArticleTitle>
<JournalTitle>Syst Rev</JournalTitle>
<VolumeID>7</VolumeID>
<IssueID>1</IssueID>
<FirstPage>158</FirstPage>
</BibArticle>
<BibUnstructured>Drago T, O’Regan PW, Welaratne I, Rooney S, O’Callaghan A, Malkit M, Roman E, Levins KJ, Alexander L, Barry D, O'Hanlon E, O'Keane V, Roddy D (2018) A comprehensive regional neurochemical theory in depression: a protocol for the systematic review and meta-analysis of 1H-MRS studies in major depressive disorder. Syst Rev 7(1):158</BibUnstructured>
</Citation>
<Citation ID="CR62">
<BibArticle>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Dreosti</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Vendrell Llopis</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Carl</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Yaksi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SW</Initials>
<FamilyName>Wilson</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli</ArticleTitle>
<JournalTitle>Curr Biol</JournalTitle>
<VolumeID>24</VolumeID>
<IssueID>4</IssueID>
<FirstPage>440</FirstPage>
<LastPage>445</LastPage>
<BibArticleDOI>10.1016/j.cub.2014.01.016</BibArticleDOI>
</BibArticle>
<BibUnstructured>Dreosti E, Vendrell Llopis N, Carl M, Yaksi E, Wilson SW (2014) Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli. Curr Biol 24(4):440–445. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.cub.2014.01.016</RefSource>
<RefTarget Address="10.1016/j.cub.2014.01.016" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR63">
<BibArticle>
<BibAuthorName>
<Initials>MM</Initials>
<FamilyName>Durkin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CA</Initials>
<FamilyName>Gunwaldsen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Borowsky</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KA</Initials>
<FamilyName>Jones</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TA</Initials>
<FamilyName>Branchek</FamilyName>
</BibAuthorName>
<Year>1999</Year>
<ArticleTitle Language="En">An in situ hybridization study of the distribution of the GABAB2 protein mRNA in the rat CNS</ArticleTitle>
<JournalTitle>Mol Brain Res</JournalTitle>
<VolumeID>71</VolumeID>
<IssueID>2</IssueID>
<FirstPage>185</FirstPage>
<LastPage>200</LastPage>
</BibArticle>
<BibUnstructured>Durkin MM, Gunwaldsen CA, Borowsky B, Jones KA, Branchek TA (1999) An in situ hybridization study of the distribution of the GABAB2 protein mRNA in the rat CNS. Mol Brain Res 71(2):185–200</BibUnstructured>
</Citation>
<Citation ID="CR64">
<BibArticle>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Ellison</FamilyName>
</BibAuthorName>
<Year>1994</Year>
<ArticleTitle Language="En">Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula</ArticleTitle>
<JournalTitle>Brain Res Brain Res Rev</JournalTitle>
<VolumeID>19</VolumeID>
<IssueID>2</IssueID>
<FirstPage>223</FirstPage>
<LastPage>239</LastPage>
</BibArticle>
<BibUnstructured>Ellison G (1994) Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res Brain Res Rev 19(2):223–239</BibUnstructured>
</Citation>
<Citation ID="CR65">
<BibArticle>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Ellison</FamilyName>
</BibAuthorName>
<Year>2002</Year>
<ArticleTitle Language="En">Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry</ArticleTitle>
<JournalTitle>Eur Neuropsychopharmacol</JournalTitle>
<VolumeID>12</VolumeID>
<IssueID>4</IssueID>
<FirstPage>287</FirstPage>
<LastPage>297</LastPage>
</BibArticle>
<BibUnstructured>Ellison G (2002) Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry. Eur Neuropsychopharmacol 12(4):287–297</BibUnstructured>
</Citation>
<Citation ID="CR66">
<BibArticle>
<BibAuthorName>
<Initials>BA</Initials>
<FamilyName>Ely</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Xu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WK</Initials>
<FamilyName>Goodman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KA</Initials>
<FamilyName>Lapidus</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Gabbay</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>ER</Initials>
<FamilyName>Stern</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Resting-state functional connectivity of the human habenula in healthy individuals: associations with subclinical depression</ArticleTitle>
<JournalTitle>Hum Brain Mapp</JournalTitle>
<VolumeID>37</VolumeID>
<IssueID>7</IssueID>
<FirstPage>2369</FirstPage>
<LastPage>2384</LastPage>
<BibArticleDOI>10.1002/hbm.23179</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ely BA, Xu J, Goodman WK, Lapidus KA, Gabbay V, Stern ER (2016) Resting-state functional connectivity of the human habenula in healthy individuals: associations with subclinical depression. Hum Brain Mapp 37(7):2369–2384. <ExternalRef>
<RefSource>https://doi.org/10.1002/hbm.23179</RefSource>
<RefTarget Address="10.1002/hbm.23179" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR67">
<BibArticle>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Erpelding</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Sava</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LE</Initials>
<FamilyName>Simons</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Lebel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Serrano</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Becerra</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Borsook</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">Habenula functional resting-state connectivity in pediatric CRPS</ArticleTitle>
<JournalTitle>J Neurophysiol</JournalTitle>
<VolumeID>111</VolumeID>
<IssueID>2</IssueID>
<FirstPage>239</FirstPage>
<LastPage>247</LastPage>
<BibArticleDOI>10.1152/jn.00405.2013</BibArticleDOI>
</BibArticle>
<BibUnstructured>Erpelding N, Sava S, Simons LE, Lebel A, Serrano P, Becerra L, Borsook D (2014) Habenula functional resting-state connectivity in pediatric CRPS. J Neurophysiol 111(2):239–247. <ExternalRef>
<RefSource>https://doi.org/10.1152/jn.00405.2013</RefSource>
<RefTarget Address="10.1152/jn.00405.2013" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR68">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Fakhoury</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">The habenula in psychiatric disorders: More than three decades of translational investigation</ArticleTitle>
<JournalTitle>Neurosci Biobehav Rev</JournalTitle>
<BibArticleDOI>10.1016/j.neubiorev.2017.02.010</BibArticleDOI>
</BibArticle>
<BibUnstructured>Fakhoury M (2017) The habenula in psychiatric disorders: More than three decades of translational investigation. Neurosci Biobehav Rev. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neubiorev.2017.02.010</RefSource>
<RefTarget Address="10.1016/j.neubiorev.2017.02.010" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR69">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Fakhoury</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PP</Initials>
<FamilyName>Rompré</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SM</Initials>
<FamilyName>Boye</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Role of the dorsal diencephalic conduction system in the brain reward circuitry</ArticleTitle>
<JournalTitle>Behav Brain Res</JournalTitle>
<VolumeID>296</VolumeID>
<FirstPage>431</FirstPage>
<LastPage>441</LastPage>
<BibArticleDOI>10.1016/j.bbr.2015.10.038</BibArticleDOI>
</BibArticle>
<BibUnstructured>Fakhoury M, Rompré PP, Boye SM (2016a) Role of the dorsal diencephalic conduction system in the brain reward circuitry. Behav Brain Res 296:431–441. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.bbr.2015.10.038</RefSource>
<RefTarget Address="10.1016/j.bbr.2015.10.038" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR70">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Fakhoury</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Voyer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Lévesque</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PP</Initials>
<FamilyName>Rompré</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Effect of electrolytic lesions of the dorsal diencephalic conduction system on the distribution of Fos-like immunoreactivity induced by rewarding electrical stimulation</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>334</VolumeID>
<FirstPage>214</FirstPage>
<LastPage>225</LastPage>
<BibArticleDOI>10.1016/j.neuroscience.2016.08.002</BibArticleDOI>
</BibArticle>
<BibUnstructured>Fakhoury M, Voyer D, Lévesque D, Rompré PP (2016b) Effect of electrolytic lesions of the dorsal diencephalic conduction system on the distribution of Fos-like immunoreactivity induced by rewarding electrical stimulation. Neuroscience 334:214–225. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroscience.2016.08.002</RefSource>
<RefTarget Address="10.1016/j.neuroscience.2016.08.002" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR71">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Faron-Górecka</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kuśmider</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kolasa</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Żurawek</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Szafran-Pilch</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Gruca</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Pabian</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Solich</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Papp</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Dziedzicka-Wasylewska</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Chronic mild stress alters the somatostatin receptors in the rat brain</ArticleTitle>
<JournalTitle>Psychopharmacology</JournalTitle>
<VolumeID>233</VolumeID>
<IssueID>2</IssueID>
<FirstPage>255</FirstPage>
<LastPage>266</LastPage>
</BibArticle>
<BibUnstructured>Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Szafran-Pilch K, Gruca P, Pabian P, Solich J, Papp M, Dziedzicka-Wasylewska M (2016) Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology 233(2):255–266</BibUnstructured>
</Citation>
<Citation ID="CR72">
<BibArticle>
<BibAuthorName>
<Initials>JR</Initials>
<FamilyName>Faucette</FamilyName>
</BibAuthorName>
<Year>1969</Year>
<ArticleTitle Language="En">The olfactory bulb and medial hemisphere wall of the rat-fish</ArticleTitle>
<JournalTitle>Chimaera J Comp Neurol</JournalTitle>
<VolumeID>137</VolumeID>
<IssueID>4</IssueID>
<FirstPage>377</FirstPage>
<LastPage>405</LastPage>
</BibArticle>
<BibUnstructured>Faucette JR (1969) The olfactory bulb and medial hemisphere wall of the rat-fish. Chimaera J Comp Neurol 137(4):377–405</BibUnstructured>
</Citation>
<Citation ID="CR73">
<BibArticle>
<BibAuthorName>
<Initials>TM</Initials>
<FamilyName>Felton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Linton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JS</Initials>
<FamilyName>Rosenblatt</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JI</Initials>
<FamilyName>Morell</FamilyName>
</BibAuthorName>
<Year>1999</Year>
<ArticleTitle Language="En">First and second order maternal behavior related afferents of the lateral habenula</ArticleTitle>
<JournalTitle>NeuroReport</JournalTitle>
<VolumeID>10</VolumeID>
<IssueID>4</IssueID>
<FirstPage>883</FirstPage>
<LastPage>887</LastPage>
</BibArticle>
<BibUnstructured>Felton TM, Linton L, Rosenblatt JS, Morell JI (1999) First and second order maternal behavior related afferents of the lateral habenula. NeuroReport 10(4):883–887</BibUnstructured>
</Citation>
<Citation ID="CR74">
<BibArticle>
<BibAuthorName>
<Initials>NG</Initials>
<FamilyName>Ferrer</FamilyName>
</BibAuthorName>
<Year>1969</Year>
<ArticleTitle Language="En">Efferent projections of the anterior olfactory nucleus</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>137</VolumeID>
<IssueID>3</IssueID>
<FirstPage>309</FirstPage>
<LastPage>320</LastPage>
<BibArticleDOI>10.1002/cne.901370305</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ferrer NG (1969) Efferent projections of the anterior olfactory nucleus. J Comp Neurol 137(3):309–320. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901370305</RefSource>
<RefTarget Address="10.1002/cne.901370305" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR75">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Filion</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Harnois</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">A comparison of projections of entopeduncular neurons to the thalamus, the midbrain and the habenula in the cat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>181</VolumeID>
<IssueID>4</IssueID>
<FirstPage>763</FirstPage>
<LastPage>780</LastPage>
</BibArticle>
<BibUnstructured>Filion M, Harnois C (1978) A comparison of projections of entopeduncular neurons to the thalamus, the midbrain and the habenula in the cat. J Comp Neurol 181(4):763–780</BibUnstructured>
</Citation>
<Citation ID="CR76">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Folgueira</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Anadón</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Yáñez</FamilyName>
</BibAuthorName>
<Year>2004</Year>
<ArticleTitle Language="En">Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: dorsal area and preoptic region</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>480</VolumeID>
<IssueID>2</IssueID>
<FirstPage>204</FirstPage>
<LastPage>233</LastPage>
</BibArticle>
<BibUnstructured>Folgueira M, Anadón R, Yáñez J (2004) Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: dorsal area and preoptic region. J Comp Neurol 480(2):204–233</BibUnstructured>
</Citation>
<Citation ID="CR77">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Fore</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Palumbo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Pelgrims</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Yaksi</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Information processing in the vertebrate habenula</ArticleTitle>
<JournalTitle>Semin Cell Dev Biol</JournalTitle>
<BibArticleDOI>10.1016/j.semcdb.2017.08.019</BibArticleDOI>
</BibArticle>
<BibUnstructured>Fore S, Palumbo F, Pelgrims R, Yaksi E (2017) Information processing in the vertebrate habenula. Semin Cell Dev Biol. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.semcdb.2017.08.019</RefSource>
<RefTarget Address="10.1016/j.semcdb.2017.08.019" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR78">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Fore</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Yaksi</FamilyName>
</BibAuthorName>
<Year>2019</Year>
<ArticleTitle Language="En">Habenula: a role in brain state transitions during coping behavior</ArticleTitle>
<JournalTitle>Curr Biol</JournalTitle>
<VolumeID>29</VolumeID>
<IssueID>14</IssueID>
<FirstPage>R692</FirstPage>
<LastPage>R694</LastPage>
<BibArticleDOI>10.1016/j.cub.2019.06.027</BibArticleDOI>
</BibArticle>
<BibUnstructured>Fore S, Yaksi E (2019) Habenula: a role in brain state transitions during coping behavior. Curr Biol 29(14):R692–R694. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.cub.2019.06.027</RefSource>
<RefTarget Address="10.1016/j.cub.2019.06.027" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR79">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Funato</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Saito-Nakazato</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Takahashi</FamilyName>
</BibAuthorName>
<Year>2000</Year>
<ArticleTitle Language="En">Axonal growth from the habenular nucleus along the neuromere boundary region of the diencephalon is regulated by semaphorin 3F and netrin-1</ArticleTitle>
<JournalTitle>Mol Cell Neurosci</JournalTitle>
<VolumeID>16</VolumeID>
<IssueID>3</IssueID>
<FirstPage>206</FirstPage>
<LastPage>220</LastPage>
</BibArticle>
<BibUnstructured>Funato H, Saito-Nakazato Y, Takahashi H (2000) Axonal growth from the habenular nucleus along the neuromere boundary region of the diencephalon is regulated by semaphorin 3F and netrin-1. Mol Cell Neurosci 16(3):206–220</BibUnstructured>
</Citation>
<Citation ID="CR80">
<BibArticle>
<BibAuthorName>
<Initials>DJ</Initials>
<FamilyName>Furman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>IH</Initials>
<FamilyName>Gotlib</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Habenula responses to potential and actual loss in major depression: preliminary evidence for lateralized dysfunction</ArticleTitle>
<JournalTitle>Soc Cogn Affect Neurosci</JournalTitle>
<VolumeID>11</VolumeID>
<IssueID>5</IssueID>
<FirstPage>843</FirstPage>
<LastPage>851</LastPage>
<BibArticleDOI>10.1093/scan/nsw019</BibArticleDOI>
</BibArticle>
<BibUnstructured>Furman DJ, Gotlib IH (2016) Habenula responses to potential and actual loss in major depression: preliminary evidence for lateralized dysfunction. Soc Cogn Affect Neurosci 11(5):843–851. <ExternalRef>
<RefSource>https://doi.org/10.1093/scan/nsw019</RefSource>
<RefTarget Address="10.1093/scan/nsw019" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR81">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Gamble</FamilyName>
</BibAuthorName>
<Year>1956</Year>
<ArticleTitle Language="En">An experimental study of the secondary olfactory connexions in <Emphasis Type="Italic">Testudo graeca</Emphasis></ArticleTitle>
<JournalTitle>J Anat</JournalTitle>
<VolumeID>90</VolumeID>
<IssueID>Pt 1</IssueID>
<FirstPage>15</FirstPage>
</BibArticle>
<BibUnstructured>Gamble H (1956) An experimental study of the secondary olfactory connexions in <Emphasis Type="Italic">Testudo graeca</Emphasis>. J Anat 90(Pt 1):15</BibUnstructured>
</Citation>
<Citation ID="CR82">
<BibArticle>
<BibAuthorName>
<Initials>HJ</Initials>
<FamilyName>Gamble</FamilyName>
</BibAuthorName>
<Year>1952</Year>
<ArticleTitle Language="En">An experimental study of the secondary olfactory connexions in <Emphasis Type="Italic">Lacerta viridis</Emphasis></ArticleTitle>
<JournalTitle>J Anat</JournalTitle>
<VolumeID>86</VolumeID>
<IssueID>2</IssueID>
<FirstPage>180</FirstPage>
<LastPage>196</LastPage>
</BibArticle>
<BibUnstructured>Gamble HJ (1952) An experimental study of the secondary olfactory connexions in <Emphasis Type="Italic">Lacerta viridis</Emphasis>. J Anat 86(2):180–196</BibUnstructured>
</Citation>
<Citation ID="CR83">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Gardon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Faget</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Chu Sin Chung</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Matifas</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Massotte</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BL</Initials>
<FamilyName>Kieffer</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>277</VolumeID>
<FirstPage>595</FirstPage>
<LastPage>609</LastPage>
<BibArticleDOI>10.1016/j.neuroscience.2014.07.053</BibArticleDOI>
</BibArticle>
<BibUnstructured>Gardon O, Faget L, Chu Sin Chung P, Matifas A, Massotte D, Kieffer BL (2014) Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience 277:595–609. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroscience.2014.07.053</RefSource>
<RefTarget Address="10.1016/j.neuroscience.2014.07.053" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR84">
<BibArticle>
<BibAuthorName>
<Initials>JC</Initials>
<FamilyName>Garland</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>GJ</Initials>
<FamilyName>Mogenson</FamilyName>
</BibAuthorName>
<Year>1983</Year>
<ArticleTitle Language="En">An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>263</VolumeID>
<IssueID>1</IssueID>
<FirstPage>33</FirstPage>
<LastPage>41</LastPage>
</BibArticle>
<BibUnstructured>Garland JC, Mogenson GJ (1983) An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain. Brain Res 263(1):33–41</BibUnstructured>
</Citation>
<Citation ID="CR85">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Geisler</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Trimble</FamilyName>
</BibAuthorName>
<Year>2008</Year>
<ArticleTitle Language="En">The lateral habenula: no longer neglected</ArticleTitle>
<JournalTitle>CNS Spectr</JournalTitle>
<VolumeID>13</VolumeID>
<IssueID>6</IssueID>
<FirstPage>484</FirstPage>
<LastPage>489</LastPage>
</BibArticle>
<BibUnstructured>Geisler S, Trimble M (2008) The lateral habenula: no longer neglected. CNS Spectr 13(6):484–489</BibUnstructured>
</Citation>
<Citation ID="CR86">
<BibArticle>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Genton</FamilyName>
</BibAuthorName>
<Year>1969</Year>
<ArticleTitle Language="En">Study, using the Nauta technique, of degeneration after electrolytic lesion of the septal region in the wood mouse (<Emphasis Type="Italic">Apodemus sylvaticus</Emphasis>)</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>14</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>23</LastPage>
</BibArticle>
<BibUnstructured>Genton C (1969) Study, using the Nauta technique, of degeneration after electrolytic lesion of the septal region in the wood mouse (<Emphasis Type="Italic">Apodemus sylvaticus</Emphasis>). Brain Res 14(1):1–23</BibUnstructured>
</Citation>
<Citation ID="CR87">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Goto</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LW</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>NS</Initials>
<FamilyName>Canteras</FamilyName>
</BibAuthorName>
<Year>2001</Year>
<ArticleTitle Language="En">Connections of the nucleus incertus</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>438</VolumeID>
<IssueID>1</IssueID>
<FirstPage>86</FirstPage>
<LastPage>122</LastPage>
</BibArticle>
<BibUnstructured>Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438(1):86–122</BibUnstructured>
</Citation>
<Citation ID="CR88">
<BibArticle>
<BibAuthorName>
<Initials>Z</Initials>
<FamilyName>Gottesfeld</FamilyName>
</BibAuthorName>
<Year>1983</Year>
<ArticleTitle Language="En">Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>275</VolumeID>
<IssueID>2</IssueID>
<FirstPage>299</FirstPage>
<LastPage>304</LastPage>
</BibArticle>
<BibUnstructured>Gottesfeld Z (1983) Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study. Brain Res 275(2):299–304</BibUnstructured>
</Citation>
<Citation ID="CR89">
<BibArticle>
<BibAuthorName>
<Initials>Z</Initials>
<FamilyName>Gottesfeld</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DM</Initials>
<FamilyName>Jacobowitz</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">Cholinergic projections from the septal-diagonal band area to the habenular nuclei</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>176</VolumeID>
<IssueID>2</IssueID>
<FirstPage>391</FirstPage>
<LastPage>394</LastPage>
</BibArticle>
<BibUnstructured>Gottesfeld Z, Jacobowitz DM (1979) Cholinergic projections from the septal-diagonal band area to the habenular nuclei. Brain Res 176(2):391–394</BibUnstructured>
</Citation>
<Citation ID="CR90">
<BibArticle>
<BibAuthorName>
<Initials>Z</Initials>
<FamilyName>Gottesfeld</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>VJ</Initials>
<FamilyName>Massari</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EA</Initials>
<FamilyName>Muth</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DM</Initials>
<FamilyName>Jacobowitz</FamilyName>
</BibAuthorName>
<Year>1977</Year>
<ArticleTitle Language="En">Stria medullaris: a possible pathway containing GABAergic afferents to the lateral habenula</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>130</VolumeID>
<IssueID>1</IssueID>
<FirstPage>184</FirstPage>
<LastPage>189</LastPage>
</BibArticle>
<BibUnstructured>Gottesfeld Z, Massari VJ, Muth EA, Jacobowitz DM (1977) Stria medullaris: a possible pathway containing GABAergic afferents to the lateral habenula. Brain Res 130(1):184–189</BibUnstructured>
</Citation>
<Citation ID="CR91">
<BibArticle>
<BibAuthorName>
<Initials>RM</Initials>
<FamilyName>Greatrex</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>OT</Initials>
<FamilyName>Phillipson</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">Demonstration of synaptic input from prefrontal cortex to the habenula i the rat</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>238</VolumeID>
<IssueID>1</IssueID>
<FirstPage>192</FirstPage>
<LastPage>197</LastPage>
</BibArticle>
<BibUnstructured>Greatrex RM, Phillipson OT (1982) Demonstration of synaptic input from prefrontal cortex to the habenula i the rat. Brain Res 238(1):192–197</BibUnstructured>
</Citation>
<Citation ID="CR92">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Groenewegen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Berendse</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Haber</FamilyName>
</BibAuthorName>
<Year>1993</Year>
<ArticleTitle Language="En">Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>57</VolumeID>
<IssueID>1</IssueID>
<FirstPage>113</FirstPage>
<LastPage>142</LastPage>
</BibArticle>
<BibUnstructured>Groenewegen H, Berendse H, Haber S (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57(1):113–142</BibUnstructured>
</Citation>
<Citation ID="CR93">
<BibArticle>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Gruber</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Kahl</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Lebenheim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Kowski</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Dittgen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RW</Initials>
<FamilyName>Veh</FamilyName>
</BibAuthorName>
<Year>2007</Year>
<ArticleTitle Language="En">Dopaminergic projections from the VTA substantially contribute to the mesohabenular pathway in the rat</ArticleTitle>
<JournalTitle>Neurosci Lett</JournalTitle>
<VolumeID>427</VolumeID>
<IssueID>3</IssueID>
<FirstPage>165</FirstPage>
<LastPage>170</LastPage>
<BibArticleDOI>10.1016/j.neulet.2007.09.016</BibArticleDOI>
</BibArticle>
<BibUnstructured>Gruber C, Kahl A, Lebenheim L, Kowski A, Dittgen A, Veh RW (2007) Dopaminergic projections from the VTA substantially contribute to the mesohabenular pathway in the rat. Neurosci Lett 427(3):165–170. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neulet.2007.09.016</RefSource>
<RefTarget Address="10.1016/j.neulet.2007.09.016" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR94">
<BibArticle>
<BibAuthorName>
<Initials>RW</Initials>
<FamilyName>Guillery</FamilyName>
</BibAuthorName>
<Year>1959</Year>
<ArticleTitle Language="En">Afferent fibres to the dorso-medial thalamic nucleus in the cat</ArticleTitle>
<JournalTitle>J Anat</JournalTitle>
<VolumeID>93</VolumeID>
<FirstPage>403</FirstPage>
<LastPage>419</LastPage>
</BibArticle>
<BibUnstructured>Guillery RW (1959) Afferent fibres to the dorso-medial thalamic nucleus in the cat. J Anat 93:403–419</BibUnstructured>
</Citation>
<Citation ID="CR95">
<BibArticle>
<BibAuthorName>
<Initials>ES</Initials>
<FamilyName>Gurdjian</FamilyName>
</BibAuthorName>
<Year>1925</Year>
<ArticleTitle Language="En">Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure</ArticleTitle>
<JournalTitle>JComp Neurol</JournalTitle>
<VolumeID>38</VolumeID>
<IssueID>2</IssueID>
<FirstPage>127</FirstPage>
<LastPage>163</LastPage>
</BibArticle>
<BibUnstructured>Gurdjian ES (1925) Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure. JComp Neurol 38(2):127–163</BibUnstructured>
</Citation>
<Citation ID="CR96">
<BibArticle>
<BibAuthorName>
<Initials>ES</Initials>
<FamilyName>Gurdjian</FamilyName>
</BibAuthorName>
<Year>1927</Year>
<ArticleTitle Language="En">The diencephalon of the albino rat. Studies on the brain of the rat No. 2</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>43</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>114</LastPage>
</BibArticle>
<BibUnstructured>Gurdjian ES (1927) The diencephalon of the albino rat. Studies on the brain of the rat No. 2. J Comp Neurol 43(1):1–114</BibUnstructured>
</Citation>
<Citation ID="CR97">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Haber</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Lynd-Balta</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Mitchell</FamilyName>
</BibAuthorName>
<Year>1993</Year>
<ArticleTitle Language="En">The organization of the descending ventral pallidal projections in the monkey</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>329</VolumeID>
<IssueID>1</IssueID>
<FirstPage>111</FirstPage>
<LastPage>128</LastPage>
</BibArticle>
<BibUnstructured>Haber S, Lynd-Balta E, Mitchell S (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329(1):111–128</BibUnstructured>
</Citation>
<Citation ID="CR98">
<BibArticle>
<BibAuthorName>
<Initials>JD</Initials>
<FamilyName>Hahn</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LW</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>2010</Year>
<ArticleTitle Language="En">Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat</ArticleTitle>
<JournalTitle>Brain Res Rev</JournalTitle>
<VolumeID>64</VolumeID>
<IssueID>1</IssueID>
<FirstPage>14</FirstPage>
<LastPage>103</LastPage>
</BibArticle>
<BibUnstructured>Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64(1):14–103</BibUnstructured>
</Citation>
<Citation ID="CR99">
<BibArticle>
<BibAuthorName>
<Initials>JD</Initials>
<FamilyName>Hahn</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LW</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>520</VolumeID>
<IssueID>9</IssueID>
<FirstPage>1831</FirstPage>
<LastPage>1890</LastPage>
</BibArticle>
<BibUnstructured>Hahn JD, Swanson LW (2012) Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 520(9):1831–1890</BibUnstructured>
</Citation>
<Citation ID="CR100">
<BibArticle>
<BibAuthorName>
<Initials>AE</Initials>
<FamilyName>Hallanger</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AI</Initials>
<FamilyName>Levey</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HJ</Initials>
<FamilyName>Lee</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DB</Initials>
<FamilyName>Rye</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BH</Initials>
<FamilyName>Wainer</FamilyName>
</BibAuthorName>
<Year>1987</Year>
<ArticleTitle Language="En">The origins of cholinergic and other subcortical afferents to the thalamus in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>262</VolumeID>
<IssueID>1</IssueID>
<FirstPage>105</FirstPage>
<LastPage>124</LastPage>
</BibArticle>
<BibUnstructured>Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262(1):105–124</BibUnstructured>
</Citation>
<Citation ID="CR101">
<BibArticle>
<BibAuthorName>
<Initials>ME</Initials>
<FamilyName>Halpern</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JO</Initials>
<FamilyName>Liang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JT</Initials>
<FamilyName>Gamse</FamilyName>
</BibAuthorName>
<Year>2003</Year>
<ArticleTitle Language="En">Leaning to the left: laterality in the zebrafish forebrain</ArticleTitle>
<JournalTitle>Trends Neurosci</JournalTitle>
<VolumeID>26</VolumeID>
<IssueID>6</IssueID>
<FirstPage>308</FirstPage>
<LastPage>313</LastPage>
</BibArticle>
<BibUnstructured>Halpern ME, Liang JO, Gamse JT (2003) Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci 26(6):308–313</BibUnstructured>
</Citation>
<Citation ID="CR102">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Hattori</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EG</Initials>
<FamilyName>McGeer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>VK</Initials>
<FamilyName>Singh</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PL</Initials>
<FamilyName>McGeer</FamilyName>
</BibAuthorName>
<Year>1977</Year>
<ArticleTitle Language="En">Cholinergic synapse of the interpeduncular nucleus</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>55</VolumeID>
<IssueID>3 PT 1</IssueID>
<FirstPage>666</FirstPage>
<LastPage>679</LastPage>
</BibArticle>
<BibUnstructured>Hattori T, McGeer EG, Singh VK, McGeer PL (1977) Cholinergic synapse of the interpeduncular nucleus. Exp Neurol 55(3 PT 1):666–679</BibUnstructured>
</Citation>
<Citation ID="CR103">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Hayakawa</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Seki</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Zyo</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">Studies on the efferent projections of the interpeduncular complex in cats</ArticleTitle>
<JournalTitle>Okajimas Folia Anat Jpn</JournalTitle>
<VolumeID>58</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>15</LastPage>
</BibArticle>
<BibUnstructured>Hayakawa T, Seki M, Zyo K (1981) Studies on the efferent projections of the interpeduncular complex in cats. Okajimas Folia Anat Jpn 58(1):1–15</BibUnstructured>
</Citation>
<Citation ID="CR104">
<BibArticle>
<BibAuthorName>
<Initials>L-N</Initials>
<FamilyName>Hazrati</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Parent</FamilyName>
</BibAuthorName>
<Year>1991</Year>
<ArticleTitle Language="En">Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>567</VolumeID>
<IssueID>2</IssueID>
<FirstPage>212</FirstPage>
<LastPage>223</LastPage>
</BibArticle>
<BibUnstructured>Hazrati L-N, Parent A (1991) Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study. Brain Res 567(2):212–223</BibUnstructured>
</Citation>
<Citation ID="CR105">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Heimer</FamilyName>
</BibAuthorName>
<Year>1972</Year>
<ArticleTitle Language="En">The Olfactory Connections of the Diencephalon in the Rat; pp 504–523</ArticleTitle>
<JournalTitle>Brain Behav Evol</JournalTitle>
<VolumeID>6</VolumeID>
<IssueID>1–6</IssueID>
<FirstPage>504</FirstPage>
<LastPage>523</LastPage>
<BibArticleDOI>10.1159/000123729</BibArticleDOI>
</BibArticle>
<BibUnstructured>Heimer L (1972) The Olfactory Connections of the Diencephalon in the Rat; pp 504–523. Brain Behav Evol 6(1–6):504–523. <ExternalRef>
<RefSource>https://doi.org/10.1159/000123729</RefSource>
<RefTarget Address="10.1159/000123729" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR106">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Hendricks</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Jesuthasan</FamilyName>
</BibAuthorName>
<Year>2007</Year>
<ArticleTitle Language="En">Asymmetric innervation of the habenula in zebrafish</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>502</VolumeID>
<IssueID>4</IssueID>
<FirstPage>611</FirstPage>
<LastPage>619</LastPage>
</BibArticle>
<BibUnstructured>Hendricks M, Jesuthasan S (2007) Asymmetric innervation of the habenula in zebrafish. J Comp Neurol 502(4):611–619</BibUnstructured>
</Citation>
<Citation ID="CR107">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Hennigan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>D'Ardenne</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SM</Initials>
<FamilyName>McClure</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Distinct midbrain and habenula pathways are involved in processing aversive events in humans</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>35</VolumeID>
<IssueID>1</IssueID>
<FirstPage>198</FirstPage>
<LastPage>208</LastPage>
<BibArticleDOI>10.1523/jneurosci.0927-14.2015</BibArticleDOI>
</BibArticle>
<BibUnstructured>Hennigan K, D'Ardenne K, McClure SM (2015) Distinct midbrain and habenula pathways are involved in processing aversive events in humans. J Neurosci 35(1):198–208. <ExternalRef>
<RefSource>https://doi.org/10.1523/jneurosci.0927-14.2015</RefSource>
<RefTarget Address="10.1523/jneurosci.0927-14.2015" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR108">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Herculano-Houzel</FamilyName>
</BibAuthorName>
<Year>2009</Year>
<ArticleTitle Language="En">The human brain in numbers: a linearly scaled-up primate brain</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>3</VolumeID>
<FirstPage>31</FirstPage>
</BibArticle>
<BibUnstructured>Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31</BibUnstructured>
</Citation>
<Citation ID="CR109">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Herkenham</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">Anesthetics and the habenulo-interpeduncular system: selective sparing of metabolic activity</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>210</VolumeID>
<IssueID>1–2</IssueID>
<FirstPage>461</FirstPage>
<LastPage>466</LastPage>
</BibArticle>
<BibUnstructured>Herkenham M (1981) Anesthetics and the habenulo-interpeduncular system: selective sparing of metabolic activity. Brain Res 210(1–2):461–466</BibUnstructured>
</Citation>
<Citation ID="CR110">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Herkenham</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<Year>1977</Year>
<ArticleTitle Language="En">Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>173</VolumeID>
<IssueID>1</IssueID>
<FirstPage>123</FirstPage>
<LastPage>146</LastPage>
<BibArticleDOI>10.1002/cne.901730107</BibArticleDOI>
</BibArticle>
<BibUnstructured>Herkenham M, Nauta WJ (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173(1):123–146. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901730107</RefSource>
<RefTarget Address="10.1002/cne.901730107" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR111">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Herkenham</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">Efferent connections of the habenular nuclei in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>187</VolumeID>
<IssueID>1</IssueID>
<FirstPage>19</FirstPage>
<LastPage>47</LastPage>
<BibArticleDOI>10.1002/cne.901870103</BibArticleDOI>
</BibArticle>
<BibUnstructured>Herkenham M, Nauta WJ (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187(1):19–47. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901870103</RefSource>
<RefTarget Address="10.1002/cne.901870103" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR112">
<BibUnstructured>Herrick CJ (1948) The brain of the tiger salamander, <Emphasis Type="Italic">Ambystoma tigrinum</Emphasis></BibUnstructured>
</Citation>
<Citation ID="CR113">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Hétu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Luo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>I</Initials>
<FamilyName>Saez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>D'Ardenne</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Lohrenz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PR</Initials>
<FamilyName>Montague</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging</ArticleTitle>
<JournalTitle>Hum Brain Mapp</JournalTitle>
<VolumeID>37</VolumeID>
<IssueID>7</IssueID>
<FirstPage>2602</FirstPage>
<LastPage>2615</LastPage>
<BibArticleDOI>10.1002/hbm.23194</BibArticleDOI>
</BibArticle>
<BibUnstructured>Hétu S, Luo Y, Saez I, D'Ardenne K, Lohrenz T, Montague PR (2016) Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging. Hum Brain Mapp 37(7):2602–2615. <ExternalRef>
<RefSource>https://doi.org/10.1002/hbm.23194</RefSource>
<RefTarget Address="10.1002/hbm.23194" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR114">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Hikosaka</FamilyName>
</BibAuthorName>
<Year>2010</Year>
<ArticleTitle Language="En">The habenula: from stress evasion to value-based decision-making</ArticleTitle>
<JournalTitle>Nat Rev Neurosci</JournalTitle>
<VolumeID>11</VolumeID>
<IssueID>7</IssueID>
<FirstPage>503</FirstPage>
<LastPage>513</LastPage>
<BibArticleDOI>10.1038/nrn2866</BibArticleDOI>
</BibArticle>
<BibUnstructured>Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11(7):503–513. <ExternalRef>
<RefSource>https://doi.org/10.1038/nrn2866</RefSource>
<RefTarget Address="10.1038/nrn2866" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR115">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Hikosaka</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SR</Initials>
<FamilyName>Sesack</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Lecourtier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PD</Initials>
<FamilyName>Shepard</FamilyName>
</BibAuthorName>
<Year>2008</Year>
<ArticleTitle Language="En">Habenula: crossroad between the basal ganglia and the limbic system</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>28</VolumeID>
<IssueID>46</IssueID>
<FirstPage>11825</FirstPage>
<LastPage>11829</LastPage>
<BibArticleDOI>10.1523/JNEUROSCI.3463-08.2008</BibArticleDOI>
</BibArticle>
<BibUnstructured>Hikosaka O, Sesack SR, Lecourtier L, Shepard PD (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28(46):11825–11829. <ExternalRef>
<RefSource>https://doi.org/10.1523/JNEUROSCI.3463-08.2008</RefSource>
<RefTarget Address="10.1523/JNEUROSCI.3463-08.2008" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR116">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Hines</FamilyName>
</BibAuthorName>
<Year>1929</Year>
<ArticleTitle Language="En">The brain of <Emphasis Type="Italic">Ornithorhynchus anatinus</Emphasis></ArticleTitle>
<JournalTitle>Philos Trans R Soc Lond Ser B Contain Pap Biol Character</JournalTitle>
<VolumeID>217</VolumeID>
<FirstPage>155</FirstPage>
<LastPage>287</LastPage>
</BibArticle>
<BibUnstructured>Hines M (1929) The brain of <Emphasis Type="Italic">Ornithorhynchus anatinus</Emphasis>. Philos Trans R Soc Lond Ser B Contain Pap Biol Character 217:155–287</BibUnstructured>
</Citation>
<Citation ID="CR117">
<BibUnstructured>Holstege GJJoCN (2009) The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. 513 (6):559–565<!-- Query ID="Q4" Text="Kindly provide Journal title for references Holstege (2009); Rioch (1931)." -->
</BibUnstructured>
</Citation>
<Citation ID="CR118">
<BibArticle>
<BibAuthorName>
<Initials>PV</Initials>
<FamilyName>Hoogland</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">Brainstem afferents to the thalamus in a lizard, <Emphasis Type="Italic">Varanus exanthematicus</Emphasis></ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>210</VolumeID>
<IssueID>2</IssueID>
<FirstPage>152</FirstPage>
<LastPage>162</LastPage>
</BibArticle>
<BibUnstructured>Hoogland PV (1982) Brainstem afferents to the thalamus in a lizard, <Emphasis Type="Italic">Varanus exanthematicus</Emphasis>. J Comp Neurol 210(2):152–162</BibUnstructured>
</Citation>
<Citation ID="CR119">
<BibUnstructured>Hsu Y-WA, Morton G, Guy EG, Wang SD, Turner EE (2016) Dorsal medial habenula regulation of mood-related behaviors and primary reinforcement by tachykinin-expressing habenula neurons. Eneuro 3(3)</BibUnstructured>
</Citation>
<Citation ID="CR120">
<BibArticle>
<BibAuthorName>
<Initials>Y-WA</Initials>
<FamilyName>Hsu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SD</Initials>
<FamilyName>Wang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Wang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Morton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HA</Initials>
<FamilyName>Zariwala</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Horacio</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EE</Initials>
<FamilyName>Turner</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>34</VolumeID>
<IssueID>34</IssueID>
<FirstPage>11366</FirstPage>
<LastPage>11384</LastPage>
</BibArticle>
<BibUnstructured>Hsu Y-WA, Wang SD, Wang S, Morton G, Zariwala HA, Horacio O, Turner EE (2014) Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci 34(34):11366–11384</BibUnstructured>
</Citation>
<Citation ID="CR121">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Humphrey</FamilyName>
</BibAuthorName>
<Year>1936</Year>
<ArticleTitle Language="En">The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>65</VolumeID>
<IssueID>1</IssueID>
<FirstPage>603</FirstPage>
<LastPage>711</LastPage>
</BibArticle>
<BibUnstructured>Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J Comp Neurol 65(1):603–711</BibUnstructured>
</Citation>
<Citation ID="CR122">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Ichijo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Hamada</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Takahashi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kobayashi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Nagai</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Toyama</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kawaguchi</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Lateralization, maturation, and anteroposterior topography in the lateral habenula revealed by ZIF268/EGR1 immunoreactivity and labeling history of neuronal activity</ArticleTitle>
<JournalTitle>Neurosci Res</JournalTitle>
<VolumeID>95</VolumeID>
<FirstPage>27</FirstPage>
<LastPage>37</LastPage>
<BibArticleDOI>10.1016/j.neures.2015.01.005</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ichijo H, Hamada M, Takahashi S, Kobayashi M, Nagai T, Toyama T, Kawaguchi M (2015) Lateralization, maturation, and anteroposterior topography in the lateral habenula revealed by ZIF268/EGR1 immunoreactivity and labeling history of neuronal activity. Neurosci Res 95:27–37. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neures.2015.01.005</RefSource>
<RefTarget Address="10.1016/j.neures.2015.01.005" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR123">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Ichijo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Nakamura</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kawaguchi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Takeuchi</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">An Evolutionary hypothesis of binary opposition in functional incompatibility about habenular asymmetry in vertebrates</ArticleTitle>
<JournalTitle>Front Neurosci</JournalTitle>
<BibArticleDOI>10.3389/fnins.2016.00595</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ichijo H, Nakamura T, Kawaguchi M, Takeuchi Y (2017) An Evolutionary hypothesis of binary opposition in functional incompatibility about habenular asymmetry in vertebrates. Front Neurosci. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnins.2016.00595</RefSource>
<RefTarget Address="10.3389/fnins.2016.00595" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR124">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Ichijo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Toyama</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Axons from the medial habenular nucleus are topographically sorted in the fasciculus retroflexus</ArticleTitle>
<JournalTitle>Anat Sci Int</JournalTitle>
<VolumeID>90</VolumeID>
<IssueID>4</IssueID>
<FirstPage>229</FirstPage>
<LastPage>234</LastPage>
<BibArticleDOI>10.1007/s12565-014-0252-z</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ichijo H, Toyama T (2015) Axons from the medial habenular nucleus are topographically sorted in the fasciculus retroflexus. Anat Sci Int 90(4):229–234. <ExternalRef>
<RefSource>https://doi.org/10.1007/s12565-014-0252-z</RefSource>
<RefTarget Address="10.1007/s12565-014-0252-z" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR125">
<BibArticle>
<BibAuthorName>
<Initials>JS</Initials>
<FamilyName>Ide</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CS</Initials>
<FamilyName>Li</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Error-related functional connectivity of the habenula in humans</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>5</VolumeID>
<FirstPage>25</FirstPage>
<BibArticleDOI>10.3389/fnhum.2011.00025</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ide JS, Li CS (2011) Error-related functional connectivity of the habenula in humans. Front Hum Neurosci 5:25. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnhum.2011.00025</RefSource>
<RefTarget Address="10.3389/fnhum.2011.00025" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR126">
<BibArticle>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Iwahori</FamilyName>
</BibAuthorName>
<Year>1977</Year>
<ArticleTitle Language="En">A Golgi study on the habenular nucleus of the cat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>171</VolumeID>
<IssueID>3</IssueID>
<FirstPage>319</FirstPage>
<LastPage>344</LastPage>
</BibArticle>
<BibUnstructured>Iwahori N (1977) A Golgi study on the habenular nucleus of the cat. J Comp Neurol 171(3):319–344</BibUnstructured>
</Citation>
<Citation ID="CR127">
<BibArticle>
<BibAuthorName>
<Initials>DM</Initials>
<FamilyName>Jacobowitz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Palkovits</FamilyName>
</BibAuthorName>
<Year>1974</Year>
<ArticleTitle Language="En">Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon)</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>157</VolumeID>
<IssueID>1</IssueID>
<FirstPage>13</FirstPage>
<LastPage>28</LastPage>
</BibArticle>
<BibUnstructured>Jacobowitz DM, Palkovits M (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J Comp Neurol 157(1):13–28</BibUnstructured>
</Citation>
<Citation ID="CR128">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Ji</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PD</Initials>
<FamilyName>Shepard</FamilyName>
</BibAuthorName>
<Year>2007</Year>
<ArticleTitle Language="En">Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>27</VolumeID>
<IssueID>26</IssueID>
<FirstPage>6923</FirstPage>
<LastPage>6930</LastPage>
<BibArticleDOI>10.1523/JNEUROSCI.0958-07.2007</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ji H, Shepard PD (2007) Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J Neurosci 27(26):6923–6930. <ExternalRef>
<RefSource>https://doi.org/10.1523/JNEUROSCI.0958-07.2007</RefSource>
<RefTarget Address="10.1523/JNEUROSCI.0958-07.2007" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR129">
<BibArticle>
<BibAuthorName>
<Initials>TN</Initials>
<FamilyName>Johnson</FamilyName>
</BibAuthorName>
<Year>1965</Year>
<ArticleTitle Language="En">An experimental study of the fornix and hypothalamo-tegmental tracts in the cat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>125</VolumeID>
<IssueID>1</IssueID>
<FirstPage>29</FirstPage>
<LastPage>39</LastPage>
</BibArticle>
<BibUnstructured>Johnson TN (1965) An experimental study of the fornix and hypothalamo-tegmental tracts in the cat. J Comp Neurol 125(1):29–39</BibUnstructured>
</Citation>
<Citation ID="CR130">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Kaufling</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Veinante</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SA</Initials>
<FamilyName>Pawlowski</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MJ</Initials>
<FamilyName>Freund-Mercier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Barrot</FamilyName>
</BibAuthorName>
<Year>2009</Year>
<ArticleTitle Language="En">Afferents to the GABAergic tail of the ventral tegmental area in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>513</VolumeID>
<IssueID>6</IssueID>
<FirstPage>597</FirstPage>
<LastPage>621</LastPage>
</BibArticle>
<BibUnstructured>Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513(6):597–621</BibUnstructured>
</Citation>
<Citation ID="CR131">
<BibArticle>
<BibAuthorName>
<Initials>MD</Initials>
<FamilyName>Kawaja</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BA</Initials>
<FamilyName>Flumerfelt</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AW</Initials>
<FamilyName>Hrycyshyn</FamilyName>
</BibAuthorName>
<Year>1990</Year>
<ArticleTitle Language="En">Synaptic organization of septal projections in the rat medial habenula: a wheat germ agglutinin—horseradish peroxidase and immunohistochemical study</ArticleTitle>
<JournalTitle>Synapse</JournalTitle>
<VolumeID>6</VolumeID>
<IssueID>1</IssueID>
<FirstPage>45</FirstPage>
<LastPage>54</LastPage>
</BibArticle>
<BibUnstructured>Kawaja MD, Flumerfelt BA, Hrycyshyn AW (1990) Synaptic organization of septal projections in the rat medial habenula: a wheat germ agglutinin—horseradish peroxidase and immunohistochemical study. Synapse 6(1):45–54</BibUnstructured>
</Citation>
<Citation ID="CR132">
<BibUnstructured>Kemali M (1984) Morphological asymmetry of the habenulae of a macrosmatic mammal, the mole. Jahrbuch für Morphologie und mikroskopische Anatomie 2 Abteilung, Zeitschrift für mikroskopisch-anatomische Forschung 98 (6):951–954</BibUnstructured>
</Citation>
<Citation ID="CR133">
<BibArticle>
<BibAuthorName>
<Initials>HT</Initials>
<FamilyName>Kha</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DI</Initials>
<FamilyName>Finkelstein</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DV</Initials>
<FamilyName>Pow</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AJ</Initials>
<FamilyName>Lawrence</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MK</Initials>
<FamilyName>Horne</FamilyName>
</BibAuthorName>
<Year>2000</Year>
<ArticleTitle Language="En">Study of projections from the entopeduncular nucleus to the thalamus of the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>426</VolumeID>
<IssueID>3</IssueID>
<FirstPage>366</FirstPage>
<LastPage>377</LastPage>
</BibArticle>
<BibUnstructured>Kha HT, Finkelstein DI, Pow DV, Lawrence AJ, Horne MK (2000) Study of projections from the entopeduncular nucleus to the thalamus of the rat. J Comp Neurol 426(3):366–377</BibUnstructured>
</Citation>
<Citation ID="CR134">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Kiening</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Sartorius</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">A new translational target for deep brain stimulation to treat depression</ArticleTitle>
<JournalTitle>EMBO Mol Med</JournalTitle>
<VolumeID>5</VolumeID>
<IssueID>8</IssueID>
<FirstPage>1151</FirstPage>
<LastPage>1153</LastPage>
<BibArticleDOI>10.1002/emmm.201302947</BibArticleDOI>
</BibArticle>
<BibUnstructured>Kiening K, Sartorius A (2013) A new translational target for deep brain stimulation to treat depression. EMBO Mol Med 5(8):1151–1153. <ExternalRef>
<RefSource>https://doi.org/10.1002/emmm.201302947</RefSource>
<RefTarget Address="10.1002/emmm.201302947" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR135">
<BibArticle>
<BibAuthorName>
<Initials>JW</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TP</Initials>
<FamilyName>Naidich</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BA</Initials>
<FamilyName>Ely</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Yacoub</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Martino</FamilyName>
<Particle>De</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>ME</Initials>
<FamilyName>Fowkes</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WK</Initials>
<FamilyName>Goodman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Xu</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Human habenula segmentation using myelin content</ArticleTitle>
<JournalTitle>Neuroimage</JournalTitle>
<VolumeID>130</VolumeID>
<FirstPage>145</FirstPage>
<LastPage>156</LastPage>
<BibArticleDOI>10.1016/j.neuroimage.2016.01.048</BibArticleDOI>
</BibArticle>
<BibUnstructured>Kim JW, Naidich TP, Ely BA, Yacoub E, De Martino F, Fowkes ME, Goodman WK, Xu J (2016) Human habenula segmentation using myelin content. Neuroimage 130:145–156. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroimage.2016.01.048</RefSource>
<RefTarget Address="10.1016/j.neuroimage.2016.01.048" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR136">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Nakano</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Jayaraman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MB</Initials>
<FamilyName>Carpenter</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>169</VolumeID>
<IssueID>3</IssueID>
<FirstPage>263</FirstPage>
<LastPage>289</LastPage>
</BibArticle>
<BibUnstructured>Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–289</BibUnstructured>
</Citation>
<Citation ID="CR137">
<BibArticle>
<BibAuthorName>
<Initials>U</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<Year>2009</Year>
<ArticleTitle Language="En">Topographic commissural and descending projections of the habenula in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>513</VolumeID>
<IssueID>2</IssueID>
<FirstPage>173</FirstPage>
<LastPage>187</LastPage>
<BibArticleDOI>10.1002/cne.21951</BibArticleDOI>
</BibArticle>
<BibUnstructured>Kim U (2009) Topographic commissural and descending projections of the habenula in the rat. J Comp Neurol 513(2):173–187. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.21951</RefSource>
<RefTarget Address="10.1002/cne.21951" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR138">
<BibArticle>
<BibAuthorName>
<Initials>U</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Lee</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat</ArticleTitle>
<JournalTitle>Eur J Neurosci</JournalTitle>
<VolumeID>35</VolumeID>
<IssueID>8</IssueID>
<FirstPage>1253</FirstPage>
<LastPage>1269</LastPage>
</BibArticle>
<BibUnstructured>Kim U, Lee T (2012) Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur J Neurosci 35(8):1253–1269</BibUnstructured>
</Citation>
<Citation ID="CR139">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Kizer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Palkovits</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Brownstein</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>108</VolumeID>
<IssueID>2</IssueID>
<FirstPage>363</FirstPage>
<LastPage>370</LastPage>
</BibArticle>
<BibUnstructured>Kizer J, Palkovits M, Brownstein M (1976) The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108(2):363–370</BibUnstructured>
</Citation>
<Citation ID="CR140">
<BibArticle>
<BibAuthorName>
<Initials>WR</Initials>
<FamilyName>Klemm</FamilyName>
</BibAuthorName>
<Year>2004</Year>
<ArticleTitle Language="En">Habenular and interpeduncularis nuclei: shared components in multiple-function networks</ArticleTitle>
<JournalTitle>Med Sci Monit</JournalTitle>
<VolumeID>10</VolumeID>
<IssueID>11</IssueID>
<FirstPage>261</FirstPage>
<LastPage>273</LastPage>
</BibArticle>
<BibUnstructured>Klemm WR (2004) Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit 10(11):261–273</BibUnstructured>
</Citation>
<Citation ID="CR141">
<BibArticle>
<BibAuthorName>
<Initials>RB</Initials>
<FamilyName>Kochanski</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Dawe</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DB</Initials>
<FamilyName>Eddelman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kocak</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Sani</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Identification of the stria medullaris thalami using diffusion tensor imaging</ArticleTitle>
<JournalTitle>Neuroimage Clin</JournalTitle>
<VolumeID>12</VolumeID>
<FirstPage>852</FirstPage>
<LastPage>857</LastPage>
<BibArticleDOI>10.1016/j.nicl.2016.10.018</BibArticleDOI>
</BibArticle>
<BibUnstructured>Kochanski RB, Dawe R, Eddelman DB, Kocak M, Sani S (2016) Identification of the stria medullaris thalami using diffusion tensor imaging. Neuroimage Clin 12:852–857. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.nicl.2016.10.018</RefSource>
<RefTarget Address="10.1016/j.nicl.2016.10.018" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR142">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Koppensteiner</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Galvin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>I</Initials>
<FamilyName>Ninan</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Development-and experience-dependent plasticity in the dorsomedial habenula</ArticleTitle>
<JournalTitle>Mol Cell Neurosci</JournalTitle>
<VolumeID>77</VolumeID>
<FirstPage>105</FirstPage>
<LastPage>112</LastPage>
</BibArticle>
<BibUnstructured>Koppensteiner P, Galvin C, Ninan I (2016) Development-and experience-dependent plasticity in the dorsomedial habenula. Mol Cell Neurosci 77:105–112</BibUnstructured>
</Citation>
<Citation ID="CR143">
<BibArticle>
<BibAuthorName>
<Initials>AB</Initials>
<FamilyName>Kowski</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Geisler</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Krauss</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RW</Initials>
<FamilyName>Veh</FamilyName>
</BibAuthorName>
<Year>2008</Year>
<ArticleTitle Language="En">Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>507</VolumeID>
<IssueID>4</IssueID>
<FirstPage>1465</FirstPage>
<LastPage>1478</LastPage>
<BibArticleDOI>10.1002/cne.21610</BibArticleDOI>
</BibArticle>
<BibUnstructured>Kowski AB, Geisler S, Krauss M, Veh RW (2008) Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat. J Comp Neurol 507(4):1465–1478. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.21610</RefSource>
<RefTarget Address="10.1002/cne.21610" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR144">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Krishnan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AS</Initials>
<FamilyName>Mathuru</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Kibat</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Rahman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CE</Initials>
<FamilyName>Lupton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Stewart</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Claridge-Chang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SC</Initials>
<FamilyName>Yen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Jesuthasan</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">The right dorsal habenula limits attraction to an odor in zebrafish</ArticleTitle>
<JournalTitle>Curr Biol</JournalTitle>
<VolumeID>24</VolumeID>
<IssueID>11</IssueID>
<FirstPage>1167</FirstPage>
<LastPage>1175</LastPage>
<BibArticleDOI>10.1016/j.cub.2014.03.073</BibArticleDOI>
</BibArticle>
<BibUnstructured>Krishnan S, Mathuru AS, Kibat C, Rahman M, Lupton CE, Stewart J, Claridge-Chang A, Yen SC, Jesuthasan S (2014) The right dorsal habenula limits attraction to an odor in zebrafish. Curr Biol 24(11):1167–1175. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.cub.2014.03.073</RefSource>
<RefTarget Address="10.1016/j.cub.2014.03.073" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR145">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Krug</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Wicht</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RG</Initials>
<FamilyName>Northcutt</FamilyName>
</BibAuthorName>
<Year>1993</Year>
<ArticleTitle Language="En">Afferent and efferent connections of the thalamic eminence in the axolotl</ArticleTitle>
<JournalTitle>Ambystoma Mex Neurosci Lett</JournalTitle>
<VolumeID>149</VolumeID>
<IssueID>2</IssueID>
<FirstPage>145</FirstPage>
<LastPage>148</LastPage>
</BibArticle>
<BibUnstructured>Krug L, Wicht H, Northcutt RG (1993) Afferent and efferent connections of the thalamic eminence in the axolotl. Ambystoma Mex Neurosci Lett 149(2):145–148</BibUnstructured>
</Citation>
<Citation ID="CR146">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Kusama</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Hagino</FamilyName>
</BibAuthorName>
<Year>1961</Year>
<ArticleTitle Language="En">Medial forebrain bundle and stria medullaris thalami in rabbits</ArticleTitle>
<JournalTitle>Psychiatry Clin Neurosci</JournalTitle>
<VolumeID>15</VolumeID>
<IssueID>3</IssueID>
<FirstPage>229</FirstPage>
<LastPage>245</LastPage>
</BibArticle>
<BibUnstructured>Kusama T, Hagino N (1961) Medial forebrain bundle and stria medullaris thalami in rabbits. Psychiatry Clin Neurosci 15(3):229–245</BibUnstructured>
</Citation>
<Citation ID="CR147">
<BibArticle>
<BibAuthorName>
<Initials>HM</Initials>
<FamilyName>Lai</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AKL</Initials>
<FamilyName>Liu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HHM</Initials>
<FamilyName>Ng</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MH</Initials>
<FamilyName>Goldfinger</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TW</Initials>
<FamilyName>Chau</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>DeFelice</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BS</Initials>
<FamilyName>Tilley</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WM</Initials>
<FamilyName>Wong</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Wu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SM</Initials>
<FamilyName>Gentleman</FamilyName>
</BibAuthorName>
<Year>2018</Year>
<ArticleTitle Language="En">Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues</ArticleTitle>
<JournalTitle>Nat Commun</JournalTitle>
<VolumeID>9</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1066</FirstPage>
</BibArticle>
<BibUnstructured>Lai HM, Liu AKL, Ng HHM, Goldfinger MH, Chau TW, DeFelice J, Tilley BS, Wong WM, Wu W, Gentleman SM (2018) Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat Commun 9(1):1066</BibUnstructured>
</Citation>
<Citation ID="CR148">
<BibArticle>
<BibAuthorName>
<Initials>KD</Initials>
<FamilyName>Larsen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RL</Initials>
<FamilyName>McBride</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">The organization of feline entopenduncular nucleus projections: anatomical studies</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>184</VolumeID>
<IssueID>2</IssueID>
<FirstPage>293</FirstPage>
<LastPage>308</LastPage>
<BibArticleDOI>10.1002/cne.901840206</BibArticleDOI>
</BibArticle>
<BibUnstructured>Larsen KD, McBride RL (1979) The organization of feline entopenduncular nucleus projections: anatomical studies. J Comp Neurol 184(2):293–308. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901840206</RefSource>
<RefTarget Address="10.1002/cne.901840206" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR149">
<BibArticle>
<BibAuthorName>
<Initials>KD</Initials>
<FamilyName>Larsen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Sutin</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">Output organization of the feline entopeduncular and subthalamic nuclei</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>157</VolumeID>
<IssueID>1</IssueID>
<FirstPage>21</FirstPage>
<LastPage>31</LastPage>
</BibArticle>
<BibUnstructured>Larsen KD, Sutin J (1978) Output organization of the feline entopeduncular and subthalamic nuclei. Brain Res 157(1):21–31</BibUnstructured>
</Citation>
<Citation ID="CR150">
<BibArticle>
<BibAuthorName>
<Initials>AM</Initials>
<FamilyName>Laursen</FamilyName>
</BibAuthorName>
<Year>1955</Year>
<ArticleTitle Language="En">An experimental study of pathways from the basal ganglia</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>102</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>25</LastPage>
</BibArticle>
<BibUnstructured>Laursen AM (1955) An experimental study of pathways from the basal ganglia. J Comp Neurol 102(1):1–25</BibUnstructured>
</Citation>
<Citation ID="CR151">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Lawson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WC</Initials>
<FamilyName>Drevets</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JP</Initials>
<FamilyName>Roiser</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">Defining the habenula in human neuroimaging studies</ArticleTitle>
<JournalTitle>Neuroimage</JournalTitle>
<VolumeID>64</VolumeID>
<FirstPage>722</FirstPage>
<LastPage>727</LastPage>
<BibArticleDOI>10.1016/j.neuroimage.2012.08.076</BibArticleDOI>
</BibArticle>
<BibUnstructured>Lawson RP, Drevets WC, Roiser JP (2013) Defining the habenula in human neuroimaging studies. Neuroimage 64:722–727. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroimage.2012.08.076</RefSource>
<RefTarget Address="10.1016/j.neuroimage.2012.08.076" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR152">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Lawson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CL</Initials>
<FamilyName>Nord</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Seymour</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DL</Initials>
<FamilyName>Thomas</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Dayan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Pilling</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JP</Initials>
<FamilyName>Roiser</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Disrupted habenula function in major depression</ArticleTitle>
<JournalTitle>Mol Psychiatry</JournalTitle>
<VolumeID>22</VolumeID>
<IssueID>2</IssueID>
<FirstPage>202</FirstPage>
<LastPage>208</LastPage>
<BibArticleDOI>10.1038/mp.2016.81</BibArticleDOI>
</BibArticle>
<BibUnstructured>Lawson RP, Nord CL, Seymour B, Thomas DL, Dayan P, Pilling S, Roiser JP (2017) Disrupted habenula function in major depression. Mol Psychiatry 22(2):202–208. <ExternalRef>
<RefSource>https://doi.org/10.1038/mp.2016.81</RefSource>
<RefTarget Address="10.1038/mp.2016.81" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR153">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Lawson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Seymour</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Loh</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Lutti</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RJ</Initials>
<FamilyName>Dolan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Dayan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Weiskopf</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JP</Initials>
<FamilyName>Roiser</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">The habenula encodes negative motivational value associated with primary punishment in humans</ArticleTitle>
<JournalTitle>Proc Natl Acad Sci USA</JournalTitle>
<VolumeID>111</VolumeID>
<IssueID>32</IssueID>
<FirstPage>11858</FirstPage>
<LastPage>11863</LastPage>
<BibArticleDOI>10.1073/pnas.1323586111</BibArticleDOI>
</BibArticle>
<BibUnstructured>Lawson RP, Seymour B, Loh E, Lutti A, Dolan RJ, Dayan P, Weiskopf N, Roiser JP (2014) The habenula encodes negative motivational value associated with primary punishment in humans. Proc Natl Acad Sci USA 111(32):11858–11863. <ExternalRef>
<RefSource>https://doi.org/10.1073/pnas.1323586111</RefSource>
<RefTarget Address="10.1073/pnas.1323586111" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR154">
<BibArticle>
<BibAuthorName>
<Initials>HW</Initials>
<FamilyName>Lee</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SH</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JY</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<Year>2019</Year>
<ArticleTitle Language="En">The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors</ArticleTitle>
<JournalTitle>Front Psychiatry</JournalTitle>
<VolumeID>10</VolumeID>
<FirstPage>100</FirstPage>
</BibArticle>
<BibUnstructured>Lee HW, Kim SH, Kim JY, Kim H (2019) The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front Psychiatry 10:100</BibUnstructured>
</Citation>
<Citation ID="CR155">
<BibArticle>
<BibAuthorName>
<Initials>CM</Initials>
<FamilyName>Leonard</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JW</Initials>
<FamilyName>Scott</FamilyName>
</BibAuthorName>
<Year>1971</Year>
<ArticleTitle Language="En">Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuronatomical study</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>141</VolumeID>
<IssueID>3</IssueID>
<FirstPage>313</FirstPage>
<LastPage>329</LastPage>
</BibArticle>
<BibUnstructured>Leonard CM, Scott JW (1971) Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuronatomical study. J Comp Neurol 141(3):313–329</BibUnstructured>
</Citation>
<Citation ID="CR156">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Levins</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Roman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Gallagher</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Murphy</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>O'Regan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Barry</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>O'Keane</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>O'Hanlon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Roddy</FamilyName>
</BibAuthorName>
<Year>2019</Year>
<ArticleTitle Language="En">AAPM 2019 annual meeting abstracts</ArticleTitle>
<JournalTitle>Pain Med</JournalTitle>
<VolumeID>20</VolumeID>
<IssueID>3</IssueID>
<FirstPage>583</FirstPage>
<LastPage>660</LastPage>
<BibArticleDOI>10.1093/pm/pny317</BibArticleDOI>
</BibArticle>
<BibUnstructured>Levins K, Roman E, Gallagher H, Murphy P, O'Regan P, Barry D, O'Keane V, O'Hanlon E, Roddy D (2019) AAPM 2019 annual meeting abstracts. Pain Med 20(3):583–660. <ExternalRef>
<RefSource>https://doi.org/10.1093/pm/pny317</RefSource>
<RefTarget Address="10.1093/pm/pny317" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR157">
<BibArticle>
<BibAuthorName>
<Initials>CS</Initials>
<FamilyName>Li</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Yan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HH</Initials>
<FamilyName>Chao</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Sinha</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Paliwal</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RT</Initials>
<FamilyName>Constable</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Zhang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TW</Initials>
<FamilyName>Lee</FamilyName>
</BibAuthorName>
<Year>2008</Year>
<ArticleTitle Language="En">Error-specific medial cortical and subcortical activity during the stop signal task: a functional magnetic resonance imaging study</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>155</VolumeID>
<IssueID>4</IssueID>
<FirstPage>1142</FirstPage>
<LastPage>1151</LastPage>
<BibArticleDOI>10.1016/j.neuroscience.2008.06.062</BibArticleDOI>
</BibArticle>
<BibUnstructured>Li CS, Yan P, Chao HH, Sinha R, Paliwal P, Constable RT, Zhang S, Lee TW (2008) Error-specific medial cortical and subcortical activity during the stop signal task: a functional magnetic resonance imaging study. Neuroscience 155(4):1142–1151. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroscience.2008.06.062</RefSource>
<RefTarget Address="10.1016/j.neuroscience.2008.06.062" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR158">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Li</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Zhou</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Liao</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Z</Initials>
<FamilyName>Yang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Wong</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Henn</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Malinow</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JR</Initials>
<FamilyName>Yates</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Hu</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">βCaMKII in lateral habenula mediates core symptoms of depression</ArticleTitle>
<JournalTitle>Science</JournalTitle>
<VolumeID>341</VolumeID>
<IssueID>6149</IssueID>
<FirstPage>1016</FirstPage>
<LastPage>1020</LastPage>
<BibArticleDOI>10.1126/science.1240729</BibArticleDOI>
</BibArticle>
<BibUnstructured>Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F, Malinow R, Yates JR, Hu H (2013) βCaMKII in lateral habenula mediates core symptoms of depression. Science 341(6149):1016–1020. <ExternalRef>
<RefSource>https://doi.org/10.1126/science.1240729</RefSource>
<RefTarget Address="10.1126/science.1240729" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR159">
<BibArticle>
<BibAuthorName>
<Initials>YQ</Initials>
<FamilyName>Li</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Takada</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Shinonaga</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Mizuno</FamilyName>
</BibAuthorName>
<Year>1993</Year>
<ArticleTitle Language="En">The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>333</VolumeID>
<IssueID>1</IssueID>
<FirstPage>118</FirstPage>
<LastPage>133</LastPage>
</BibArticle>
<BibUnstructured>Li YQ, Takada M, Shinonaga Y, Mizuno N (1993) The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat. J Comp Neurol 333(1):118–133</BibUnstructured>
</Citation>
<Citation ID="CR160">
<BibArticle>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Lim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JA</Initials>
<FamilyName>Golden</FamilyName>
</BibAuthorName>
<Year>2007</Year>
<ArticleTitle Language="En">Patterning the developing diencephalon</ArticleTitle>
<JournalTitle>Brain Res Rev</JournalTitle>
<VolumeID>53</VolumeID>
<IssueID>1</IssueID>
<FirstPage>17</FirstPage>
<LastPage>26</LastPage>
</BibArticle>
<BibUnstructured>Lim Y, Golden JA (2007) Patterning the developing diencephalon. Brain Res Rev 53(1):17–26</BibUnstructured>
</Citation>
<Citation ID="CR161">
<BibArticle>
<BibAuthorName>
<Initials>LB</Initials>
<FamilyName>Lima</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Bueno</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Leite</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Souza</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Gonçalves</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>IC</Initials>
<FamilyName>Furigo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Donato</FamilyName>
<Suffix>Jr</Suffix>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Metzger</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>525</VolumeID>
<IssueID>10</IssueID>
<FirstPage>2411</FirstPage>
<LastPage>2442</LastPage>
</BibArticle>
<BibUnstructured>Lima LB, Bueno D, Leite F, Souza S, Gonçalves L, Furigo IC, Donato J Jr, Metzger M (2017) Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J Comp Neurol 525(10):2411–2442</BibUnstructured>
</Citation>
<Citation ID="CR162">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Lindvall</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Björklund</FamilyName>
</BibAuthorName>
<Year>1974</Year>
<ArticleTitle Language="En">The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method</ArticleTitle>
<JournalTitle>Acta Physiol Scand Suppl</JournalTitle>
<VolumeID>412</VolumeID>
<FirstPage>1</FirstPage>
<LastPage>48</LastPage>
</BibArticle>
<BibUnstructured>Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48</BibUnstructured>
</Citation>
<Citation ID="CR163">
<BibArticle>
<BibAuthorName>
<Initials>YT</Initials>
<FamilyName>Loo</FamilyName>
</BibAuthorName>
<Year>1931</Year>
<ArticleTitle Language="En">The forebrain of the opossum, Didelphis virginiana.Part II. Histology</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>52</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>148</LastPage>
</BibArticle>
<BibUnstructured>Loo YT (1931) The forebrain of the opossum, Didelphis virginiana.Part II. Histology. J Comp Neurol 52(1):1–148</BibUnstructured>
</Citation>
<Citation ID="CR164">
<BibArticle>
<BibAuthorName>
<Initials>AJM</Initials>
<FamilyName>Loonen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RW</Initials>
<FamilyName>Kupka</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SA</Initials>
<FamilyName>Ivanova</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Circuits regulating pleasure and happiness in bipolar disorder</ArticleTitle>
<JournalTitle>Front Neural Circuits</JournalTitle>
<VolumeID>11</VolumeID>
<FirstPage>35</FirstPage>
<BibArticleDOI>10.3389/fncir.2017.00035</BibArticleDOI>
</BibArticle>
<BibUnstructured>Loonen AJM, Kupka RW, Ivanova SA (2017) Circuits regulating pleasure and happiness in bipolar disorder. Front Neural Circuits 11:35. <ExternalRef>
<RefSource>https://doi.org/10.3389/fncir.2017.00035</RefSource>
<RefTarget Address="10.3389/fncir.2017.00035" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR165">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Maldonado</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DL</Initials>
<FamilyName>Molfese</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Viswanath</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Curtis</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Jones</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TG</Initials>
<FamilyName>Hayes</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Marcelli</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Mediwala</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Baldwin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JM</Initials>
<FamilyName>Garcia</FamilyName>
</BibAuthorName>
<Year>2018</Year>
<ArticleTitle Language="En">The habenula as a novel link between the homeostatic and hedonic pathways in cancer-associated weight loss: a pilot study</ArticleTitle>
<JournalTitle>J Cachexia Sarcopenia Muscle</JournalTitle>
<VolumeID>9</VolumeID>
<IssueID>3</IssueID>
<FirstPage>497</FirstPage>
<LastPage>504</LastPage>
</BibArticle>
<BibUnstructured>Maldonado M, Molfese DL, Viswanath H, Curtis K, Jones A, Hayes TG, Marcelli M, Mediwala S, Baldwin P, Garcia JM (2018) The habenula as a novel link between the homeostatic and hedonic pathways in cancer-associated weight loss: a pilot study. J Cachexia Sarcopenia Muscle 9(3):497–504</BibUnstructured>
</Citation>
<Citation ID="CR166">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Marburg</FamilyName>
</BibAuthorName>
<Year>1944</Year>
<ArticleTitle Language="En">The structure and fiber connections of the human habenula</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>80</VolumeID>
<IssueID>2</IssueID>
<FirstPage>211</FirstPage>
<LastPage>233</LastPage>
</BibArticle>
<BibUnstructured>Marburg O (1944) The structure and fiber connections of the human habenula. J Comp Neurol 80(2):211–233</BibUnstructured>
</Citation>
<Citation ID="CR167">
<BibArticle>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Markovic</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Agosta</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Canu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Inuggi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>I</Initials>
<FamilyName>Petrovic</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>I</Initials>
<FamilyName>Stankovic</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Imperiale</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Stojkovic</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>VS</Initials>
<FamilyName>Kostic</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Filippi</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Role of habenula and amygdala dysfunction in Parkinson disease patients with punding</ArticleTitle>
<JournalTitle>Neurology</JournalTitle>
<VolumeID>88</VolumeID>
<IssueID>23</IssueID>
<FirstPage>2207</FirstPage>
<LastPage>2215</LastPage>
<BibArticleDOI>10.1212/WNL.0000000000004012</BibArticleDOI>
</BibArticle>
<BibUnstructured>Markovic V, Agosta F, Canu E, Inuggi A, Petrovic I, Stankovic I, Imperiale F, Stojkovic T, Kostic VS, Filippi M (2017) Role of habenula and amygdala dysfunction in Parkinson disease patients with punding. Neurology 88(23):2207–2215. <ExternalRef>
<RefSource>https://doi.org/10.1212/WNL.0000000000004012</RefSource>
<RefTarget Address="10.1212/WNL.0000000000004012" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR168">
<BibArticle>
<BibAuthorName>
<Initials>LC</Initials>
<FamilyName>Massopust</FamilyName>
<Suffix>Jr</Suffix>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Thompson</FamilyName>
</BibAuthorName>
<Year>1962</Year>
<ArticleTitle Language="En">A new interpedunculo-diencephalic pathway in rats and cats</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>118</VolumeID>
<IssueID>1</IssueID>
<FirstPage>97</FirstPage>
<LastPage>105</LastPage>
</BibArticle>
<BibUnstructured>Massopust LC Jr, Thompson R (1962) A new interpedunculo-diencephalic pathway in rats and cats. J Comp Neurol 118(1):97–105</BibUnstructured>
</Citation>
<Citation ID="CR169">
<BibArticle>
<BibAuthorName>
<Initials>RL</Initials>
<FamilyName>McBride</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">Organization of afferent connections of the feline lateral habenular nucleus</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>198</VolumeID>
<IssueID>1</IssueID>
<FirstPage>89</FirstPage>
<LastPage>99</LastPage>
</BibArticle>
<BibUnstructured>McBride RL (1981) Organization of afferent connections of the feline lateral habenular nucleus. J Comp Neurol 198(1):89–99</BibUnstructured>
</Citation>
<Citation ID="CR170">
<BibArticle>
<BibAuthorName>
<Initials>RC</Initials>
<FamilyName>Meibach</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Siegel</FamilyName>
</BibAuthorName>
<Year>1977</Year>
<ArticleTitle Language="En">Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>119</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>20</LastPage>
</BibArticle>
<BibUnstructured>Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res 119(1):1–20</BibUnstructured>
</Citation>
<Citation ID="CR171">
<BibArticle>
<BibAuthorName>
<Initials>FJ</Initials>
<FamilyName>Meye</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Lecca</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Valentinova</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Mameli</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">Synaptic and cellular profile of neurons in the lateral habenula</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>7</VolumeID>
<FirstPage>860</FirstPage>
<BibArticleDOI>10.3389/fnhum.2013.00860</BibArticleDOI>
</BibArticle>
<BibUnstructured>Meye FJ, Lecca S, Valentinova K, Mameli M (2013) Synaptic and cellular profile of neurons in the lateral habenula. Front Hum Neurosci 7:860. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnhum.2013.00860</RefSource>
<RefTarget Address="10.3389/fnhum.2013.00860" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR172">
<BibUnstructured>Meynert VGdS (1872) Strickers Handbuch. Bd II</BibUnstructured>
</Citation>
<Citation ID="CR173">
<BibArticle>
<BibAuthorName>
<Initials>OE</Initials>
<FamilyName>Millhouse</FamilyName>
</BibAuthorName>
<Year>1969</Year>
<ArticleTitle Language="En">A Golgi study of the descending medial forebrain bundle</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>15</VolumeID>
<IssueID>2</IssueID>
<FirstPage>341</FirstPage>
<LastPage>363</LastPage>
</BibArticle>
<BibUnstructured>Millhouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15(2):341–363</BibUnstructured>
</Citation>
<Citation ID="CR174">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Mitchell</FamilyName>
</BibAuthorName>
<Year>1963</Year>
<ArticleTitle Language="En">Connections of the habenula and of the interpeduncular nucleus in the cat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>121</VolumeID>
<IssueID>3</IssueID>
<FirstPage>441</FirstPage>
<LastPage>457</LastPage>
</BibArticle>
<BibUnstructured>Mitchell R (1963) Connections of the habenula and of the interpeduncular nucleus in the cat. J Comp Neurol 121(3):441–457</BibUnstructured>
</Citation>
<Citation ID="CR175">
<BibArticle>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Mizuno</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CD</Initials>
<FamilyName>Clemente</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EK</Initials>
<FamilyName>Sauerland</FamilyName>
</BibAuthorName>
<Year>1969</Year>
<ArticleTitle Language="En">Fiber projections from rostral basal forebrain structures in the cat</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>25</VolumeID>
<IssueID>2</IssueID>
<FirstPage>220</FirstPage>
<LastPage>237</LastPage>
</BibArticle>
<BibUnstructured>Mizuno N, Clemente CD, Sauerland EK (1969) Fiber projections from rostral basal forebrain structures in the cat. Exp Neurol 25(2):220–237</BibUnstructured>
</Citation>
<Citation ID="CR176">
<BibArticle>
<BibAuthorName>
<Initials>RY</Initials>
<FamilyName>Moore</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AE</Initials>
<FamilyName>Halaris</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BE</Initials>
<FamilyName>Jones</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">Serotonin neurons of the midbrain raphe: ascending projections</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>180</VolumeID>
<IssueID>3</IssueID>
<FirstPage>417</FirstPage>
<LastPage>438</LastPage>
</BibArticle>
<BibUnstructured>Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180(3):417–438</BibUnstructured>
</Citation>
<Citation ID="CR177">
<BibArticle>
<BibAuthorName>
<Initials>JA</Initials>
<FamilyName>Moreno-Bravo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JE</Initials>
<FamilyName>Martinez-Lopez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MP</Initials>
<FamilyName>Madrigal</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Kim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>GS</Initials>
<FamilyName>Mastick</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Lopez-Bendito</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Martinez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Puelles</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion</ArticleTitle>
<JournalTitle>Brain Struct Funct</JournalTitle>
<VolumeID>221</VolumeID>
<IssueID>1</IssueID>
<FirstPage>665</FirstPage>
<LastPage>678</LastPage>
</BibArticle>
<BibUnstructured>Moreno-Bravo JA, Martinez-Lopez JE, Madrigal MP, Kim M, Mastick GS, Lopez-Bendito G, Martinez S, Puelles E (2016) Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion. Brain Struct Funct 221(1):665–678</BibUnstructured>
</Citation>
<Citation ID="CR178">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Moriizumi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Hattori</FamilyName>
</BibAuthorName>
<Year>1992</Year>
<ArticleTitle Language="En">Choline acetyltransferase-immunoreactive neurons in the rat entopeduncular nucleus</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>46</VolumeID>
<IssueID>3</IssueID>
<FirstPage>721</FirstPage>
<LastPage>728</LastPage>
</BibArticle>
<BibUnstructured>Moriizumi T, Hattori T (1992) Choline acetyltransferase-immunoreactive neurons in the rat entopeduncular nucleus. Neuroscience 46(3):721–728</BibUnstructured>
</Citation>
<Citation ID="CR179">
<BibArticle>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Morin</FamilyName>
</BibAuthorName>
<Year>1950</Year>
<ArticleTitle Language="En">An experimental study of hypothalamic connections in the guinea pig</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>92</VolumeID>
<IssueID>2</IssueID>
<FirstPage>193</FirstPage>
<LastPage>213</LastPage>
</BibArticle>
<BibUnstructured>Morin F (1950) An experimental study of hypothalamic connections in the guinea pig. J Comp Neurol 92(2):193–213</BibUnstructured>
</Citation>
<Citation ID="CR180">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Morin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Meyer-Bernstein</FamilyName>
</BibAuthorName>
<Year>1999</Year>
<ArticleTitle Language="En">The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>91</VolumeID>
<IssueID>1</IssueID>
<FirstPage>81</FirstPage>
<LastPage>105</LastPage>
</BibArticle>
<BibUnstructured>Morin L, Meyer-Bernstein E (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91(1):81–105</BibUnstructured>
</Citation>
<Citation ID="CR181">
<BibArticle>
<BibAuthorName>
<Initials>BJ</Initials>
<FamilyName>Morley</FamilyName>
</BibAuthorName>
<Year>1986</Year>
<ArticleTitle Language="En">The interpeduncular nucleus</ArticleTitle>
<JournalTitle>Int Rev Neurobiol</JournalTitle>
<VolumeID>28</VolumeID>
<FirstPage>157</FirstPage>
<LastPage>182</LastPage>
</BibArticle>
<BibUnstructured>Morley BJ (1986) The interpeduncular nucleus. Int Rev Neurobiol 28:157–182</BibUnstructured>
</Citation>
<Citation ID="CR182">
<BibArticle>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Muller</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>O'Rahilly</FamilyName>
</BibAuthorName>
<Year>1990</Year>
<ArticleTitle Language="En">The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei</ArticleTitle>
<JournalTitle>Anat Embryol (Berl)</JournalTitle>
<VolumeID>182</VolumeID>
<IssueID>3</IssueID>
<FirstPage>285</FirstPage>
<LastPage>306</LastPage>
</BibArticle>
<BibUnstructured>Muller F, O'Rahilly R (1990) The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol (Berl) 182(3):285–306</BibUnstructured>
</Citation>
<Citation ID="CR183">
<BibArticle>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Muller</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>O'Rahilly</FamilyName>
</BibAuthorName>
<Year>1997</Year>
<ArticleTitle Language="En">The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos</ArticleTitle>
<JournalTitle>Acta Anat (Basel)</JournalTitle>
<VolumeID>158</VolumeID>
<IssueID>2</IssueID>
<FirstPage>83</FirstPage>
<LastPage>99</LastPage>
</BibArticle>
<BibUnstructured>Muller F, O'Rahilly R (1997) The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos. Acta Anat (Basel) 158(2):83–99</BibUnstructured>
</Citation>
<Citation ID="CR184">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Muzerelle</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Scotto-Lomassese</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JF</Initials>
<FamilyName>Bernard</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Soiza-Reilly</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Gaspar</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem</ArticleTitle>
<JournalTitle>Brain Struct Funct</JournalTitle>
<VolumeID>221</VolumeID>
<IssueID>1</IssueID>
<FirstPage>535</FirstPage>
<LastPage>561</LastPage>
</BibArticle>
<BibUnstructured>Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct Funct 221(1):535–561</BibUnstructured>
</Citation>
<Citation ID="CR185">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Nagy</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Carter</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Lehmann</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Fibiger</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>145</VolumeID>
<IssueID>2</IssueID>
<FirstPage>360</FirstPage>
<LastPage>364</LastPage>
</BibArticle>
<BibUnstructured>Nagy J, Carter D, Lehmann J, Fibiger H (1978) Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat. Brain Res 145(2):360–364</BibUnstructured>
</Citation>
<Citation ID="CR186">
<BibBook>
<BibAuthorName>
<Initials>TP</Initials>
<FamilyName>Naidich</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HM</Initials>
<FamilyName>Duvernoy</FamilyName>
</BibAuthorName>
<Year>2009</Year>
<BookTitle>Duvernoy's atlas of the human brain stem and cerebellum: high-field MRI : surface anatomy, internal structure, vascularization and 3D sectional anatomy</BookTitle>
<PublisherName>Springer</PublisherName>
<PublisherLocation>Wien</PublisherLocation>
</BibBook>
<BibUnstructured>Naidich TP, Duvernoy HM (2009) Duvernoy's atlas of the human brain stem and cerebellum: high-field MRI : surface anatomy, internal structure, vascularization and 3D sectional anatomy. Springer, Wien</BibUnstructured>
</Citation>
<Citation ID="CR187">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Najafi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Kinnison</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Pessoa</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Dynamics of intersubject brain networks during anxious anticipation</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>11</VolumeID>
<FirstPage>552</FirstPage>
<BibArticleDOI>10.3389/fnhum.2017.00552</BibArticleDOI>
</BibArticle>
<BibUnstructured>Najafi M, Kinnison J, Pessoa L (2017) Dynamics of intersubject brain networks during anxious anticipation. Front Hum Neurosci 11:552. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnhum.2017.00552</RefSource>
<RefTarget Address="10.3389/fnhum.2017.00552" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR188">
<BibArticle>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<Year>1956</Year>
<ArticleTitle Language="En">An experimental study of the fornix system in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>104</VolumeID>
<IssueID>2</IssueID>
<FirstPage>247</FirstPage>
<LastPage>271</LastPage>
</BibArticle>
<BibUnstructured>Nauta WJ (1956) An experimental study of the fornix system in the rat. J Comp Neurol 104(2):247–271</BibUnstructured>
</Citation>
<Citation ID="CR189">
<BibArticle>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WR</Initials>
<FamilyName>Mehler</FamilyName>
</BibAuthorName>
<Year>1966</Year>
<ArticleTitle Language="En">Projections of the lentiform nucleus in the monkey</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>1</VolumeID>
<IssueID>1</IssueID>
<FirstPage>3</FirstPage>
<LastPage>42</LastPage>
</BibArticle>
<BibUnstructured>Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42</BibUnstructured>
</Citation>
<Citation ID="CR190">
<BibArticle>
<BibAuthorName>
<Initials>WJH</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<Year>1958</Year>
<ArticleTitle Language="En">Hippocampal projections and related neural pathways to the mid-brain in the cat</ArticleTitle>
<JournalTitle>Brain</JournalTitle>
<VolumeID>81</VolumeID>
<IssueID>3</IssueID>
<FirstPage>319</FirstPage>
<LastPage>340</LastPage>
</BibArticle>
<BibUnstructured>Nauta WJH (1958) Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain 81(3):319–340</BibUnstructured>
</Citation>
<Citation ID="CR191">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Nishikawa</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Fage</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Scatton</FamilyName>
</BibAuthorName>
<Year>1986</Year>
<ArticleTitle Language="En">Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>373</VolumeID>
<IssueID>1–2</IssueID>
<FirstPage>324</FirstPage>
<LastPage>336</LastPage>
</BibArticle>
<BibUnstructured>Nishikawa T, Fage D, Scatton B (1986) Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res 373(1–2):324–336</BibUnstructured>
</Citation>
<Citation ID="CR192">
<BibUnstructured>Nolte J (2002) The human brain: an introduction to its functional anatomy. 5th ed. edn. Mosby, St. Louis, Mo.; London</BibUnstructured>
</Citation>
<Citation ID="CR193">
<BibArticle>
<BibAuthorName>
<Initials>FE</Initials>
<FamilyName>Olucha-Bordonau</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Teruel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Barcia-González</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Ruiz-Torner</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AA</Initials>
<FamilyName>Valverde-Navarro</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Martínez-Soriano</FamilyName>
</BibAuthorName>
<Year>2003</Year>
<ArticleTitle Language="En">Cytoarchitecture and efferent projections of the nucleus incertus of the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>464</VolumeID>
<IssueID>1</IssueID>
<FirstPage>62</FirstPage>
<LastPage>97</LastPage>
</BibArticle>
<BibUnstructured>Olucha-Bordonau FE, Teruel V, Barcia-González J, Ruiz-Torner A, Valverde-Navarro AA, Martínez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464(1):62–97</BibUnstructured>
</Citation>
<Citation ID="CR194">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Parent</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">Identification of the pallidal and peripallidal cells projecting to the habenula in monkey</ArticleTitle>
<JournalTitle>Neurosci Lett</JournalTitle>
<VolumeID>15</VolumeID>
<IssueID>2–3</IssueID>
<FirstPage>159</FirstPage>
<LastPage>164</LastPage>
</BibArticle>
<BibUnstructured>Parent A (1979) Identification of the pallidal and peripallidal cells projecting to the habenula in monkey. Neurosci Lett 15(2–3):159–164</BibUnstructured>
</Citation>
<Citation ID="CR195">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Parent</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Gravel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Boucher</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">The origin of forebrain afferents to the habenula in rat, cat and monkey</ArticleTitle>
<JournalTitle>Brain Res Bull</JournalTitle>
<VolumeID>6</VolumeID>
<IssueID>1</IssueID>
<FirstPage>23</FirstPage>
<LastPage>38</LastPage>
</BibArticle>
<BibUnstructured>Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res Bull 6(1):23–38</BibUnstructured>
</Citation>
<Citation ID="CR196">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Parent</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Lévesque</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Parent</FamilyName>
</BibAuthorName>
<Year>2001</Year>
<ArticleTitle Language="En">Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>439</VolumeID>
<IssueID>2</IssueID>
<FirstPage>162</FirstPage>
<LastPage>175</LastPage>
</BibArticle>
<BibUnstructured>Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175</BibUnstructured>
</Citation>
<Citation ID="CR197">
<BibArticle>
<BibAuthorName>
<Initials>MC</Initials>
<FamilyName>Parent</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">Handling item-level missing data: simpler is just as good</ArticleTitle>
<JournalTitle>Couns Psychol</JournalTitle>
<VolumeID>41</VolumeID>
<IssueID>4</IssueID>
<FirstPage>568</FirstPage>
<LastPage>600</LastPage>
</BibArticle>
<BibUnstructured>Parent MC (2013) Handling item-level missing data: simpler is just as good. Couns Psychol 41(4):568–600</BibUnstructured>
</Citation>
<Citation ID="CR198">
<BibBook>
<BibAuthorName>
<Initials>MA</Initials>
<FamilyName>Patestas</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>LP</Initials>
<FamilyName>Gartner</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<BookTitle>A textbook of neuroanatomy</BookTitle>
<PublisherName>Wiley</PublisherName>
<PublisherLocation>Hoboken</PublisherLocation>
</BibBook>
<BibUnstructured>Patestas MA, Gartner LP (2016) A textbook of neuroanatomy. Wiley, Hoboken</BibUnstructured>
</Citation>
<Citation ID="CR199">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Phillipson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Griffith</FamilyName>
</BibAuthorName>
<Year>1980</Year>
<ArticleTitle Language="En">The neurones of origin for the mesohabenular dopamine pathway</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>197</VolumeID>
<IssueID>1</IssueID>
<FirstPage>213</FirstPage>
<LastPage>218</LastPage>
</BibArticle>
<BibUnstructured>Phillipson O, Griffith A (1980) The neurones of origin for the mesohabenular dopamine pathway. Brain Res 197(1):213–218</BibUnstructured>
</Citation>
<Citation ID="CR200">
<BibArticle>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Phillipson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Pycock</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula</ArticleTitle>
<JournalTitle>Exp Brain Res</JournalTitle>
<VolumeID>45</VolumeID>
<IssueID>1–2</IssueID>
<FirstPage>89</FirstPage>
<LastPage>94</LastPage>
</BibArticle>
<BibUnstructured>Phillipson O, Pycock C (1982) Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Exp Brain Res 45(1–2):89–94</BibUnstructured>
</Citation>
<Citation ID="CR201">
<BibArticle>
<BibAuthorName>
<Initials>ET</Initials>
<FamilyName>Pierce</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WE</Initials>
<FamilyName>Foote</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JA</Initials>
<FamilyName>Hobson</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">The efferent connection of the nucleus raphe dorsalis</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>107</VolumeID>
<IssueID>1</IssueID>
<FirstPage>137</FirstPage>
<LastPage>144</LastPage>
</BibArticle>
<BibUnstructured>Pierce ET, Foote WE, Hobson JA (1976) The efferent connection of the nucleus raphe dorsalis. Brain Res 107(1):137–144</BibUnstructured>
</Citation>
<Citation ID="CR202">
<BibArticle>
<BibAuthorName>
<Initials>EW</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<Year>1963</Year>
<ArticleTitle Language="En">Septal efferents revealed by axonal degeneration in the rat</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>8</VolumeID>
<IssueID>5</IssueID>
<FirstPage>406</FirstPage>
<LastPage>422</LastPage>
</BibArticle>
<BibUnstructured>Powell EW (1963) Septal efferents revealed by axonal degeneration in the rat. Exp Neurol 8(5):406–422</BibUnstructured>
</Citation>
<Citation ID="CR203">
<BibArticle>
<BibAuthorName>
<Initials>EW</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<Year>1966</Year>
<ArticleTitle Language="En">Septal efferents in the cat</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>14</VolumeID>
<IssueID>3</IssueID>
<FirstPage>328</FirstPage>
<LastPage>337</LastPage>
</BibArticle>
<BibUnstructured>Powell EW (1966) Septal efferents in the cat. Exp Neurol 14(3):328–337</BibUnstructured>
</Citation>
<Citation ID="CR204">
<BibArticle>
<BibAuthorName>
<Initials>EW</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<Year>1968</Year>
<ArticleTitle Language="En">Septohabenular connections in the rat, cat and monkey</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>134</VolumeID>
<IssueID>2</IssueID>
<FirstPage>145</FirstPage>
<LastPage>150</LastPage>
</BibArticle>
<BibUnstructured>Powell EW (1968) Septohabenular connections in the rat, cat and monkey. J Comp Neurol 134(2):145–150</BibUnstructured>
</Citation>
<Citation ID="CR205">
<BibArticle>
<BibAuthorName>
<Initials>EW</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RB</Initials>
<FamilyName>Leman</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">Connections of the nucleus accumbens</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>105</VolumeID>
<IssueID>3</IssueID>
<FirstPage>389</FirstPage>
<LastPage>403</LastPage>
</BibArticle>
<BibUnstructured>Powell EW, Leman RB (1976) Connections of the nucleus accumbens. Brain Res 105(3):389–403</BibUnstructured>
</Citation>
<Citation ID="CR206">
<BibArticle>
<BibAuthorName>
<Initials>TP</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WM</Initials>
<FamilyName>Cowan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Raisman</FamilyName>
</BibAuthorName>
<Year>1965</Year>
<ArticleTitle Language="En">The central olfactory connexions</ArticleTitle>
<JournalTitle>J Anat</JournalTitle>
<VolumeID>99</VolumeID>
<IssueID>Pt 4</IssueID>
<FirstPage>791</FirstPage>
<LastPage>813</LastPage>
</BibArticle>
<BibUnstructured>Powell TP, Cowan WM, Raisman G (1965) The central olfactory connexions. J Anat 99(Pt 4):791–813</BibUnstructured>
</Citation>
<Citation ID="CR207">
<BibArticle>
<BibAuthorName>
<Initials>JL</Initials>
<FamilyName>Price</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Powell</FamilyName>
</BibAuthorName>
<Year>1970</Year>
<ArticleTitle Language="En">The afferent connexions of the nucleus of the horizontal limb of the diagonal band</ArticleTitle>
<JournalTitle>J Anat</JournalTitle>
<VolumeID>107</VolumeID>
<IssueID>Pt 2</IssueID>
<FirstPage>239</FirstPage>
</BibArticle>
<BibUnstructured>Price JL, Powell T (1970) The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J Anat 107(Pt 2):239</BibUnstructured>
</Citation>
<Citation ID="CR208">
<BibArticle>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Qin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Luo</FamilyName>
</BibAuthorName>
<Year>2009</Year>
<ArticleTitle Language="En">Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>161</VolumeID>
<IssueID>3</IssueID>
<FirstPage>827</FirstPage>
<LastPage>837</LastPage>
</BibArticle>
<BibUnstructured>Qin C, Luo M (2009) Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161(3):827–837</BibUnstructured>
</Citation>
<Citation ID="CR209">
<BibArticle>
<BibAuthorName>
<Initials>LA</Initials>
<FamilyName>Quina</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Tempest</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Ng</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Harris</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Ferguson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Jhou</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EE</Initials>
<FamilyName>Turner</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Efferent pathways of the mouse lateral habenula</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>523</VolumeID>
<IssueID>1</IssueID>
<FirstPage>32</FirstPage>
<LastPage>60</LastPage>
<BibArticleDOI>10.1002/cne.23662</BibArticleDOI>
</BibArticle>
<BibUnstructured>Quina LA, Tempest L, Ng L, Harris J, Ferguson S, Jhou T, Turner EE (2015a) Efferent pathways of the mouse lateral habenula. J Comp Neurol 523(1):32–60. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.23662</RefSource>
<RefTarget Address="10.1002/cne.23662" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR210">
<BibArticle>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Raisman</FamilyName>
</BibAuthorName>
<Year>1966</Year>
<ArticleTitle Language="En">The connexions of the septum</ArticleTitle>
<JournalTitle>Brain</JournalTitle>
<VolumeID>89</VolumeID>
<IssueID>2</IssueID>
<FirstPage>317</FirstPage>
<LastPage>348</LastPage>
</BibArticle>
<BibUnstructured>Raisman G (1966) The connexions of the septum. Brain 89(2):317–348</BibUnstructured>
</Citation>
<Citation ID="CR211">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Ramon y Cajal</FamilyName>
</BibAuthorName>
<Year>1911</Year>
<ArticleTitle Language="En">Histologie du syste me nerveux de I'Homme et des verte be s</ArticleTitle>
<JournalTitle>Maloine (Paris)</JournalTitle>
<VolumeID>2</VolumeID>
<FirstPage>891</FirstPage>
<LastPage>942</LastPage>
</BibArticle>
<BibUnstructured>Ramon y Cajal S (1911) Histologie du syste me nerveux de I'Homme et des verte be s. Maloine (Paris) 2:891–942</BibUnstructured>
</Citation>
<Citation ID="CR212">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Ranft</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Dobrowolny</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Krell</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Bielau</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Bogerts</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HG</Initials>
<FamilyName>Bernstein</FamilyName>
</BibAuthorName>
<Year>2010</Year>
<ArticleTitle Language="En">Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia</ArticleTitle>
<JournalTitle>Psychol Med</JournalTitle>
<VolumeID>40</VolumeID>
<IssueID>4</IssueID>
<FirstPage>557</FirstPage>
<LastPage>567</LastPage>
<BibArticleDOI>10.1017/S0033291709990821</BibArticleDOI>
</BibArticle>
<BibUnstructured>Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40(4):557–567. <ExternalRef>
<RefSource>https://doi.org/10.1017/S0033291709990821</RefSource>
<RefTarget Address="10.1017/S0033291709990821" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR213">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Ranson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Ranson</FamilyName>
</BibAuthorName>
<Year>1941</Year>
<ArticleTitle Language="En">Fiber connections of corpus striatum as seen in Marchi preparations</ArticleTitle>
<JournalTitle>Arch Neurol Psychiatry</JournalTitle>
<VolumeID>46</VolumeID>
<IssueID>2</IssueID>
<FirstPage>230</FirstPage>
<LastPage>249</LastPage>
</BibArticle>
<BibUnstructured>Ranson S, Ranson M (1941) Fiber connections of corpus striatum as seen in Marchi preparations. Arch Neurol Psychiatry 46(2):230–249</BibUnstructured>
</Citation>
<Citation ID="CR214">
<BibArticle>
<BibAuthorName>
<Initials>LJ</Initials>
<FamilyName>Rausch</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CJ</Initials>
<FamilyName>Long</FamilyName>
</BibAuthorName>
<Year>1971</Year>
<ArticleTitle Language="En">Habenular nuclei: a crucial link between the olfactory and motor systems</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>29</VolumeID>
<IssueID>1</IssueID>
<FirstPage>146</FirstPage>
<LastPage>150</LastPage>
</BibArticle>
<BibUnstructured>Rausch LJ, Long CJ (1971) Habenular nuclei: a crucial link between the olfactory and motor systems. Brain Res 29(1):146–150</BibUnstructured>
</Citation>
<Citation ID="CR215">
<BibUnstructured>Rioch DMJJoCN (1931) Studies on the diencephalon of Carnivora Part III Certain myelinated‐fiber connections of the diencephalon of the dog (Canis familiaris), cat (<Emphasis Type="Italic">Felis domestica</Emphasis>), and aevisa (<Emphasis Type="Italic">Crossarchus obscurus</Emphasis>) 53 (2):319–388</BibUnstructured>
</Citation>
<Citation ID="CR216">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Risold</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Canteras</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>1994</Year>
<ArticleTitle Language="En">Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>348</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>40</LastPage>
</BibArticle>
<BibUnstructured>Risold P, Canteras N, Swanson L (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348(1):1–40</BibUnstructured>
</Citation>
<Citation ID="CR217">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Risold</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>1995</Year>
<ArticleTitle Language="En">Cajal's nucleus of the stria medullaris: characterization by in situ hybridization and immunohistochemistry for enkephalin</ArticleTitle>
<JournalTitle>J Chem Neuroanat</JournalTitle>
<VolumeID>9</VolumeID>
<IssueID>4</IssueID>
<FirstPage>235</FirstPage>
<LastPage>240</LastPage>
</BibArticle>
<BibUnstructured>Risold P, Swanson L (1995) Cajal's nucleus of the stria medullaris: characterization by in situ hybridization and immunohistochemistry for enkephalin. J Chem Neuroanat 9(4):235–240</BibUnstructured>
</Citation>
<Citation ID="CR218">
<BibArticle>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Risold</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>1997</Year>
<ArticleTitle Language="En">Connections of the rat lateral septal complex</ArticleTitle>
<JournalTitle>Brain Res Rev</JournalTitle>
<VolumeID>24</VolumeID>
<IssueID>2–3</IssueID>
<FirstPage>115</FirstPage>
<LastPage>195</LastPage>
</BibArticle>
<BibUnstructured>Risold P, Swanson L (1997) Connections of the rat lateral septal complex. Brain Res Rev 24(2–3):115–195</BibUnstructured>
</Citation>
<Citation ID="CR219">
<BibArticle>
<BibAuthorName>
<Initials>DW</Initials>
<FamilyName>Roddy</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Roman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Rooney</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Andrews</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Farrell</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Doolin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KJ</Initials>
<FamilyName>Levins</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Tozzi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Tierney</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Barry</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Frodl</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>O'Keane</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>O'Hanlon</FamilyName>
</BibAuthorName>
<Year>2018</Year>
<ArticleTitle Language="En">Awakening neuropsychiatric research into the stria medullaris: development of a diffusion-weighted imaging tractography protocol of this key limbic structure</ArticleTitle>
<JournalTitle>Front Neuroanat</JournalTitle>
<VolumeID>12</VolumeID>
<FirstPage>39</FirstPage>
<BibArticleDOI>10.3389/fnana.2018.00039</BibArticleDOI>
</BibArticle>
<BibUnstructured>Roddy DW, Roman E, Rooney S, Andrews S, Farrell C, Doolin K, Levins KJ, Tozzi L, Tierney P, Barry D, Frodl T, O'Keane V, O'Hanlon E (2018) Awakening neuropsychiatric research into the stria medullaris: development of a diffusion-weighted imaging tractography protocol of this key limbic structure. Front Neuroanat 12:39. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnana.2018.00039</RefSource>
<RefTarget Address="10.3389/fnana.2018.00039" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR220">
<BibArticle>
<BibAuthorName>
<Initials>EJ</Initials>
<FamilyName>Rose</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BJ</Initials>
<FamilyName>Salmeron</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>TJ</Initials>
<FamilyName>Ross</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Waltz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JB</Initials>
<FamilyName>Schweitzer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EA</Initials>
<FamilyName>Stein</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Dissociable effects of cocaine dependence on reward processes: the role of acute cocaine and craving</ArticleTitle>
<JournalTitle>Neuropsychopharmacology</JournalTitle>
<VolumeID>42</VolumeID>
<IssueID>3</IssueID>
<FirstPage>736</FirstPage>
<LastPage>747</LastPage>
<BibArticleDOI>10.1038/npp.2016.161</BibArticleDOI>
</BibArticle>
<BibUnstructured>Rose EJ, Salmeron BJ, Ross TJ, Waltz J, Schweitzer JB, Stein EA (2017) Dissociable effects of cocaine dependence on reward processes: the role of acute cocaine and craving. Neuropsychopharmacology 42(3):736–747. <ExternalRef>
<RefSource>https://doi.org/10.1038/npp.2016.161</RefSource>
<RefTarget Address="10.1038/npp.2016.161" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR221">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Salas</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Baldwin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Biasi</FamilyName>
<Particle>de</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>PR</Initials>
<FamilyName>Montague</FamilyName>
</BibAuthorName>
<Year>2010</Year>
<ArticleTitle Language="En">BOLD responses to negative reward prediction errors in human habenula</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>4</VolumeID>
<FirstPage>36</FirstPage>
<BibArticleDOI>10.3389/fnhum.2010.00036</BibArticleDOI>
</BibArticle>
<BibUnstructured>Salas R, Baldwin P, de Biasi M, Montague PR (2010) BOLD responses to negative reward prediction errors in human habenula. Front Hum Neurosci 4:36. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnhum.2010.00036</RefSource>
<RefTarget Address="10.3389/fnhum.2010.00036" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR222">
<BibArticle>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Saper</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Cowan</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>183</VolumeID>
<IssueID>4</IssueID>
<FirstPage>689</FirstPage>
<LastPage>706</LastPage>
</BibArticle>
<BibUnstructured>Saper C, Swanson L, Cowan W (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183(4):689–706</BibUnstructured>
</Citation>
<Citation ID="CR223">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Sartorius</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>FA</Initials>
<FamilyName>Henn</FamilyName>
</BibAuthorName>
<Year>2007</Year>
<ArticleTitle Language="En">Deep brain stimulation of the lateral habenula in treatment resistant major depression</ArticleTitle>
<JournalTitle>Med Hypotheses</JournalTitle>
<VolumeID>69</VolumeID>
<IssueID>6</IssueID>
<FirstPage>1305</FirstPage>
<LastPage>1308</LastPage>
<BibArticleDOI>10.1016/j.mehy.2007.03.021</BibArticleDOI>
</BibArticle>
<BibUnstructured>Sartorius A, Henn FA (2007) Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses 69(6):1305–1308. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.mehy.2007.03.021</RefSource>
<RefTarget Address="10.1016/j.mehy.2007.03.021" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR224">
<BibUnstructured>Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. In: Biol Psychiatry, vol 67. vol 2. United States, pp e9-e11. 10.1016/j.biopsych.2009.08.027</BibUnstructured>
</Citation>
<Citation ID="CR225">
<BibArticle>
<BibAuthorName>
<Initials>JB</Initials>
<FamilyName>Savitz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Bonne</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AC</Initials>
<FamilyName>Nugent</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Vythilingam</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Bogers</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DS</Initials>
<FamilyName>Charney</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WC</Initials>
<FamilyName>Drevets</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Habenula volume in post-traumatic stress disorder measured with high-resolution MRI</ArticleTitle>
<JournalTitle>Biol Mood Anxiety Disord</JournalTitle>
<VolumeID>1</VolumeID>
<IssueID>1</IssueID>
<FirstPage>7</FirstPage>
<BibArticleDOI>10.1186/2045-5380-1-7</BibArticleDOI>
</BibArticle>
<BibUnstructured>Savitz JB, Bonne O, Nugent AC, Vythilingam M, Bogers W, Charney DS, Drevets WC (2011a) Habenula volume in post-traumatic stress disorder measured with high-resolution MRI. Biol Mood Anxiety Disord 1(1):7. <ExternalRef>
<RefSource>https://doi.org/10.1186/2045-5380-1-7</RefSource>
<RefTarget Address="10.1186/2045-5380-1-7" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR226">
<BibArticle>
<BibAuthorName>
<Initials>JB</Initials>
<FamilyName>Savitz</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AC</Initials>
<FamilyName>Nugent</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Bogers</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JP</Initials>
<FamilyName>Roiser</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EE</Initials>
<FamilyName>Bain</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Neumeister</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CA</Initials>
<FamilyName>Zarate</FamilyName>
<Suffix>Jr</Suffix>
</BibAuthorName>
<BibAuthorName>
<Initials>HK</Initials>
<FamilyName>Manji</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DM</Initials>
<FamilyName>Cannon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Marrett</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Henn</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DS</Initials>
<FamilyName>Charney</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WC</Initials>
<FamilyName>Drevets</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Habenula volume in bipolar disorder and major depressive disorder: a high-resolution magnetic resonance imaging study</ArticleTitle>
<JournalTitle>Biol Psychiatry</JournalTitle>
<VolumeID>69</VolumeID>
<IssueID>4</IssueID>
<FirstPage>336</FirstPage>
<LastPage>343</LastPage>
<BibArticleDOI>10.1016/j.biopsych.2010.09.027</BibArticleDOI>
</BibArticle>
<BibUnstructured>Savitz JB, Nugent AC, Bogers W, Roiser JP, Bain EE, Neumeister A, Zarate CA Jr, Manji HK, Cannon DM, Marrett S, Henn F, Charney DS, Drevets WC (2011b) Habenula volume in bipolar disorder and major depressive disorder: a high-resolution magnetic resonance imaging study. Biol Psychiatry 69(4):336–343. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.biopsych.2010.09.027</RefSource>
<RefTarget Address="10.1016/j.biopsych.2010.09.027" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR227">
<BibArticle>
<BibAuthorName>
<Initials>ER</Initials>
<FamilyName>Schmidt</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RJ</Initials>
<FamilyName>Pasterkamp</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">The molecular mechanisms controlling morphogenesis and wiring of the habenula</ArticleTitle>
<JournalTitle>Pharmacol Biochem Behav</JournalTitle>
<VolumeID>162</VolumeID>
<FirstPage>29</FirstPage>
<LastPage>37</LastPage>
</BibArticle>
<BibUnstructured>Schmidt ER, Pasterkamp RJ (2017) The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 162:29–37</BibUnstructured>
</Citation>
<Citation ID="CR228">
<BibArticle>
<BibAuthorName>
<Initials>FM</Initials>
<FamilyName>Schmidt</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Schindler</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Adamidis</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Strauss</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Trankner</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Trampel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Walter</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>U</Initials>
<FamilyName>Hegerl</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Turner</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Geyer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Schonknecht</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI</ArticleTitle>
<JournalTitle>Eur Arch Psychiatry Clin Neurosci</JournalTitle>
<VolumeID>267</VolumeID>
<IssueID>2</IssueID>
<FirstPage>107</FirstPage>
<LastPage>115</LastPage>
<BibArticleDOI>10.1007/s00406-016-0675-8</BibArticleDOI>
</BibArticle>
<BibUnstructured>Schmidt FM, Schindler S, Adamidis M, Strauss M, Trankner A, Trampel R, Walter M, Hegerl U, Turner R, Geyer S, Schonknecht P (2017) Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur Arch Psychiatry Clin Neurosci 267(2):107–115. <ExternalRef>
<RefSource>https://doi.org/10.1007/s00406-016-0675-8</RefSource>
<RefTarget Address="10.1007/s00406-016-0675-8" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR229">
<BibArticle>
<BibAuthorName>
<Initials>LC</Initials>
<FamilyName>Schmued</FamilyName>
</BibAuthorName>
<Year>1994</Year>
<ArticleTitle Language="En">Diagonal ventral forebrain continuum has overlapping telencephalic inputs and brainstem outputs which may represent loci for limbic/autonomic integration</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>667</VolumeID>
<IssueID>2</IssueID>
<FirstPage>175</FirstPage>
<LastPage>191</LastPage>
</BibArticle>
<BibUnstructured>Schmued LC (1994) Diagonal ventral forebrain continuum has overlapping telencephalic inputs and brainstem outputs which may represent loci for limbic/autonomic integration. Brain Res 667(2):175–191</BibUnstructured>
</Citation>
<Citation ID="CR230">
<BibArticle>
<BibAuthorName>
<Initials>LC</Initials>
<FamilyName>Schmued</FamilyName>
</BibAuthorName>
<Year>2016</Year>
<ArticleTitle Language="En">Development and application of novel histochemical tracers for localizing brain connectivity and pathology</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>1645</VolumeID>
<FirstPage>31</FirstPage>
<LastPage>35</LastPage>
</BibArticle>
<BibUnstructured>Schmued LC (2016) Development and application of novel histochemical tracers for localizing brain connectivity and pathology. Brain Res 1645:31–35</BibUnstructured>
</Citation>
<Citation ID="CR231">
<BibArticle>
<BibAuthorName>
<Initials>EB</Initials>
<FamilyName>Sheffield</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>MW</Initials>
<FamilyName>Quick</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RA</Initials>
<FamilyName>Lester</FamilyName>
</BibAuthorName>
<Year>2000</Year>
<ArticleTitle Language="En">Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons</ArticleTitle>
<JournalTitle>Neuropharmacology</JournalTitle>
<VolumeID>39</VolumeID>
<IssueID>13</IssueID>
<FirstPage>2591</FirstPage>
<LastPage>2603</LastPage>
</BibArticle>
<BibUnstructured>Sheffield EB, Quick MW, Lester RA (2000) Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. Neuropharmacology 39(13):2591–2603</BibUnstructured>
</Citation>
<Citation ID="CR232">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Shelton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Becerra</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Borsook</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Unmasking the mysteries of the habenula in pain and analgesia</ArticleTitle>
<JournalTitle>Prog Neurobiol</JournalTitle>
<VolumeID>96</VolumeID>
<IssueID>2</IssueID>
<FirstPage>208</FirstPage>
<LastPage>219</LastPage>
<BibArticleDOI>10.1016/j.pneurobio.2012.01.004</BibArticleDOI>
</BibArticle>
<BibUnstructured>Shelton L, Becerra L, Borsook D (2012a) Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol 96(2):208–219. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.pneurobio.2012.01.004</RefSource>
<RefTarget Address="10.1016/j.pneurobio.2012.01.004" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR233">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Shelton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Pendse</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Maleki</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EA</Initials>
<FamilyName>Moulton</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Lebel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Becerra</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Borsook</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Mapping pain activation and connectivity of the human habenula</ArticleTitle>
<JournalTitle>J Neurophysiol</JournalTitle>
<VolumeID>107</VolumeID>
<IssueID>10</IssueID>
<FirstPage>2633</FirstPage>
<LastPage>2648</LastPage>
<BibArticleDOI>10.1152/jn.00012.2012</BibArticleDOI>
</BibArticle>
<BibUnstructured>Shelton L, Pendse G, Maleki N, Moulton EA, Lebel A, Becerra L, Borsook D (2012b) Mapping pain activation and connectivity of the human habenula. J Neurophysiol 107(10):2633–2648. <ExternalRef>
<RefSource>https://doi.org/10.1152/jn.00012.2012</RefSource>
<RefTarget Address="10.1152/jn.00012.2012" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR234">
<BibArticle>
<BibAuthorName>
<Initials>X</Initials>
<FamilyName>Shen</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>X</Initials>
<FamilyName>Ruan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Zhao</FamilyName>
</BibAuthorName>
<Year>2012</Year>
<ArticleTitle Language="En">Stimulation of midbrain dopaminergic structures modifies firing rates of rat lateral habenula neurons</ArticleTitle>
<JournalTitle>PLoS ONE</JournalTitle>
<VolumeID>7</VolumeID>
<IssueID>4</IssueID>
<FirstPage>e34323</FirstPage>
<BibArticleDOI>10.1371/journal.pone.0034323</BibArticleDOI>
</BibArticle>
<BibUnstructured>Shen X, Ruan X, Zhao H (2012) Stimulation of midbrain dopaminergic structures modifies firing rates of rat lateral habenula neurons. PLoS ONE 7(4):e34323. <ExternalRef>
<RefSource>https://doi.org/10.1371/journal.pone.0034323</RefSource>
<RefTarget Address="10.1371/journal.pone.0034323" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR235">
<BibArticle>
<BibAuthorName>
<Initials>PD</Initials>
<FamilyName>Shepard</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HH</Initials>
<FamilyName>Holcomb</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JM</Initials>
<FamilyName>Gold</FamilyName>
</BibAuthorName>
<Year>2006</Year>
<ArticleTitle Language="En">Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes</ArticleTitle>
<JournalTitle>Schizophr Bull</JournalTitle>
<VolumeID>32</VolumeID>
<IssueID>3</IssueID>
<FirstPage>417</FirstPage>
<LastPage>421</LastPage>
</BibArticle>
<BibUnstructured>Shepard PD, Holcomb HH, Gold JM (2006) Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr Bull 32(3):417–421</BibUnstructured>
</Citation>
<Citation ID="CR236">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Shinoda</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Tohyama</FamilyName>
</BibAuthorName>
<Year>1987</Year>
<ArticleTitle Language="En">Analysis of the habenulopetal enkephalinergic system in the rat brain: an immunohistochemical study</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>255</VolumeID>
<IssueID>4</IssueID>
<FirstPage>483</FirstPage>
<LastPage>496</LastPage>
</BibArticle>
<BibUnstructured>Shinoda K, Tohyama M (1987) Analysis of the habenulopetal enkephalinergic system in the rat brain: an immunohistochemical study. J Comp Neurol 255(4):483–496</BibUnstructured>
</Citation>
<Citation ID="CR237">
<BibArticle>
<BibAuthorName>
<Initials>LJ</Initials>
<FamilyName>Sim</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SA</Initials>
<FamilyName>Joseph</FamilyName>
</BibAuthorName>
<Year>1991</Year>
<ArticleTitle Language="En">Arcuate nucleus projections to brainstem regions which modulate nociception</ArticleTitle>
<JournalTitle>J Chem Neuroanat</JournalTitle>
<VolumeID>4</VolumeID>
<IssueID>2</IssueID>
<FirstPage>97</FirstPage>
<LastPage>109</LastPage>
</BibArticle>
<BibUnstructured>Sim LJ, Joseph SA (1991) Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat 4(2):97–109</BibUnstructured>
</Citation>
<Citation ID="CR238">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Simon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Moal</FamilyName>
<Particle>Le</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Calas</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H] leucine and horseradish peroxidase</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>178</VolumeID>
<IssueID>1</IssueID>
<FirstPage>17</FirstPage>
<LastPage>40</LastPage>
</BibArticle>
<BibUnstructured>Simon H, Le Moal M, Calas A (1979) Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H] leucine and horseradish peroxidase. Brain Res 178(1):17–40</BibUnstructured>
</Citation>
<Citation ID="CR239">
<BibArticle>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Skagerberg</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>O</Initials>
<FamilyName>Lindvall</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Bjo</FamilyName>
</BibAuthorName>
<Year>1984</Year>
<ArticleTitle Language="En">Origin, course and termination of the mesohabenular dopamine pathway in the rat</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>307</VolumeID>
<IssueID>1–2</IssueID>
<FirstPage>99</FirstPage>
<LastPage>108</LastPage>
</BibArticle>
<BibUnstructured>Skagerberg G, Lindvall O, Bjo A (1984) Origin, course and termination of the mesohabenular dopamine pathway in the rat. Brain Res 307(1–2):99–108</BibUnstructured>
</Citation>
<Citation ID="CR240">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Smaha</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Kaelber</FamilyName>
</BibAuthorName>
<Year>1973</Year>
<ArticleTitle Language="En">Efferent fiber projections of the habenula and the interpeduncular nucleus. An experimental study in the opossum and cat</ArticleTitle>
<JournalTitle>Exp Brain Res</JournalTitle>
<VolumeID>16</VolumeID>
<IssueID>3</IssueID>
<FirstPage>291</FirstPage>
<LastPage>308</LastPage>
</BibArticle>
<BibUnstructured>Smaha L, Kaelber W (1973) Efferent fiber projections of the habenula and the interpeduncular nucleus. An experimental study in the opossum and cat. Exp Brain Res 16(3):291–308</BibUnstructured>
</Citation>
<Citation ID="CR241">
<BibUnstructured>Soemmerring STv (1791) S. T. So\0308mmerring Abbildungen und Beschreibungen einiger Misgeburten die sich ehemals auf dem anatomischen Theater zu Cassel befanden, etc. Mainz,</BibUnstructured>
</Citation>
<Citation ID="CR242">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Sofroniew</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Weindl</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>U</Initials>
<FamilyName>Schrell</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Wetzstein</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain</ArticleTitle>
<JournalTitle>Acta Histochemica Supplementband</JournalTitle>
<VolumeID>24</VolumeID>
<FirstPage>79</FirstPage>
<LastPage>95</LastPage>
</BibArticle>
<BibUnstructured>Sofroniew M, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochemica Supplementband 24:79–95</BibUnstructured>
</Citation>
<Citation ID="CR243">
<BibArticle>
<BibAuthorName>
<Initials>W</Initials>
<FamilyName>Staines</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Yamamoto</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Dewar</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Daddona</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Geiger</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Nagy</FamilyName>
</BibAuthorName>
<Year>1988</Year>
<ArticleTitle Language="En">Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>455</VolumeID>
<IssueID>1</IssueID>
<FirstPage>72</FirstPage>
<LastPage>87</LastPage>
</BibArticle>
<BibUnstructured>Staines W, Yamamoto T, Dewar K, Daddona P, Geiger J, Nagy J (1988) Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat. Brain Res 455(1):72–87</BibUnstructured>
</Citation>
<Citation ID="CR244">
<BibArticle>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Strotmann</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>RM</Initials>
<FamilyName>Heidemann</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Anwander</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Weiss</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Trampel</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Villringer</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Turner</FamilyName>
</BibAuthorName>
<Year>2014</Year>
<ArticleTitle Language="En">High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla</ArticleTitle>
<JournalTitle>J Magn Reson Imaging</JournalTitle>
<VolumeID>39</VolumeID>
<IssueID>4</IssueID>
<FirstPage>1018</FirstPage>
<LastPage>1026</LastPage>
<BibArticleDOI>10.1002/jmri.24252</BibArticleDOI>
</BibArticle>
<BibUnstructured>Strotmann B, Heidemann RM, Anwander A, Weiss M, Trampel R, Villringer A, Turner R (2014) High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla. J Magn Reson Imaging 39(4):1018–1026. <ExternalRef>
<RefSource>https://doi.org/10.1002/jmri.24252</RefSource>
<RefTarget Address="10.1002/jmri.24252" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR245">
<BibArticle>
<BibAuthorName>
<Initials>RJ</Initials>
<FamilyName>Sutherland</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex</ArticleTitle>
<JournalTitle>Neurosci Biobehav Rev</JournalTitle>
<VolumeID>6</VolumeID>
<IssueID>1</IssueID>
<FirstPage>1</FirstPage>
<LastPage>13</LastPage>
</BibArticle>
<BibUnstructured>Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6(1):1–13</BibUnstructured>
</Citation>
<Citation ID="CR246">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat</ArticleTitle>
<JournalTitle>Brain Res Bull</JournalTitle>
<VolumeID>9</VolumeID>
<IssueID>1–6</IssueID>
<FirstPage>321</FirstPage>
<LastPage>353</LastPage>
</BibArticle>
<BibUnstructured>Swanson L (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353</BibUnstructured>
</Citation>
<Citation ID="CR247">
<BibArticle>
<BibAuthorName>
<Initials>LW</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">An autoradiographic study of the efferent connections of the preoptic region in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>167</VolumeID>
<IssueID>2</IssueID>
<FirstPage>227</FirstPage>
<LastPage>256</LastPage>
<BibArticleDOI>10.1002/cne.901670207</BibArticleDOI>
</BibArticle>
<BibUnstructured>Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167(2):227–256. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901670207</RefSource>
<RefTarget Address="10.1002/cne.901670207" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR248">
<BibArticle>
<BibAuthorName>
<Initials>LW</Initials>
<FamilyName>Swanson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WM</Initials>
<FamilyName>Cowan</FamilyName>
</BibAuthorName>
<Year>1979</Year>
<ArticleTitle Language="En">The connections of the septal region in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>186</VolumeID>
<IssueID>4</IssueID>
<FirstPage>621</FirstPage>
<LastPage>655</LastPage>
<BibArticleDOI>10.1002/cne.901860408</BibArticleDOI>
</BibArticle>
<BibUnstructured>Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186(4):621–655. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901860408</RefSource>
<RefTarget Address="10.1002/cne.901860408" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR249">
<BibArticle>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Takishita</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Kubo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Mitani</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Y</Initials>
<FamilyName>Nakamura</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Masuda</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Iwahashi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Kataoka</FamilyName>
</BibAuthorName>
<Year>1990</Year>
<ArticleTitle Language="En">Differential effects of fasciculus retroflexus lesions on serotonin, glutamate and gamma-aminobutyrate content and choline acetyltransferase activity in the interpeduncular nucleus</ArticleTitle>
<JournalTitle>Brain Res Bull</JournalTitle>
<VolumeID>25</VolumeID>
<IssueID>4</IssueID>
<FirstPage>569</FirstPage>
<LastPage>574</LastPage>
</BibArticle>
<BibUnstructured>Takishita N, Kubo H, Mitani A, Nakamura Y, Masuda S, Iwahashi K, Kataoka K (1990) Differential effects of fasciculus retroflexus lesions on serotonin, glutamate and gamma-aminobutyrate content and choline acetyltransferase activity in the interpeduncular nucleus. Brain Res Bull 25(4):569–574</BibUnstructured>
</Citation>
<Citation ID="CR250">
<BibArticle>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Tardif</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Clarke</FamilyName>
</BibAuthorName>
<Year>2001</Year>
<ArticleTitle Language="En">Intrinsic connectivity of human auditory areas: a tracing study with DiI</ArticleTitle>
<JournalTitle>Eur J Neurosci</JournalTitle>
<VolumeID>13</VolumeID>
<IssueID>5</IssueID>
<FirstPage>1045</FirstPage>
<LastPage>1050</LastPage>
</BibArticle>
<BibUnstructured>Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13(5):1045–1050</BibUnstructured>
</Citation>
<Citation ID="CR251">
<BibUnstructured>Tarin P (1750) Adversaria anatomica, de omnibus corporis humani partium, tum descriptionibus, cum picturis. Adversaria anatomica prima, nervorum et organorum functionibus animalibus inserventium, descriptionibus et iconismis. Parisiis</BibUnstructured>
</Citation>
<Citation ID="CR252">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Torrisi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>CL</Initials>
<FamilyName>Nord</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>NL</Initials>
<FamilyName>Balderston</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JP</Initials>
<FamilyName>Roiser</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Grillon</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Ernst</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Resting state connectivity of the human habenula at ultra-high field</ArticleTitle>
<JournalTitle>Neuroimage</JournalTitle>
<VolumeID>147</VolumeID>
<FirstPage>872</FirstPage>
<LastPage>879</LastPage>
<BibArticleDOI>10.1016/j.neuroimage.2016.10.034</BibArticleDOI>
</BibArticle>
<BibUnstructured>Torrisi S, Nord CL, Balderston NL, Roiser JP, Grillon C, Ernst M (2017) Resting state connectivity of the human habenula at ultra-high field. Neuroimage 147:872–879. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroimage.2016.10.034</RefSource>
<RefTarget Address="10.1016/j.neuroimage.2016.10.034" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR253">
<BibArticle>
<BibAuthorName>
<Initials>JD</Initials>
<FamilyName>Tournier</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Mori</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Leemans</FamilyName>
</BibAuthorName>
<Year>2011</Year>
<ArticleTitle Language="En">Diffusion tensor imaging and beyond</ArticleTitle>
<JournalTitle>Magn Reson Med</JournalTitle>
<VolumeID>65</VolumeID>
<IssueID>6</IssueID>
<FirstPage>1532</FirstPage>
<LastPage>1556</LastPage>
<BibArticleDOI>10.1002/mrm.22924</BibArticleDOI>
</BibArticle>
<BibUnstructured>Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556. <ExternalRef>
<RefSource>https://doi.org/10.1002/mrm.22924</RefSource>
<RefTarget Address="10.1002/mrm.22924" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR254">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Tripathi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Prensa</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Mengual</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">Axonal branching patterns of ventral pallidal neurons in the rat</ArticleTitle>
<JournalTitle>Brain Struct Funct</JournalTitle>
<VolumeID>218</VolumeID>
<IssueID>5</IssueID>
<FirstPage>1133</FirstPage>
<LastPage>1157</LastPage>
</BibArticle>
<BibUnstructured>Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218(5):1133–1157</BibUnstructured>
</Citation>
<Citation ID="CR255">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Troiano</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Siegel</FamilyName>
</BibAuthorName>
<Year>1975</Year>
<ArticleTitle Language="En">The ascending and descending connections of the hypothalamus in the cat</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>49</VolumeID>
<IssueID>1</IssueID>
<FirstPage>161</FirstPage>
<LastPage>173</LastPage>
</BibArticle>
<BibUnstructured>Troiano R, Siegel A (1975) The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49(1):161–173</BibUnstructured>
</Citation>
<Citation ID="CR256">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Troiano</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Siegel</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">Efferent connections of the basal forebrain in the cat: the nucleus accumbens</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>61</VolumeID>
<IssueID>1</IssueID>
<FirstPage>185</FirstPage>
<LastPage>197</LastPage>
</BibArticle>
<BibUnstructured>Troiano R, Siegel A (1978a) Efferent connections of the basal forebrain in the cat: the nucleus accumbens. Exp Neurol 61(1):185–197</BibUnstructured>
</Citation>
<Citation ID="CR257">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Troiano</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Siegel</FamilyName>
</BibAuthorName>
<Year>1978</Year>
<ArticleTitle Language="En">Efferent connections of the basal forebrain in the cat: the substantia innominata</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>61</VolumeID>
<IssueID>1</IssueID>
<FirstPage>198</FirstPage>
<LastPage>213</LastPage>
</BibArticle>
<BibUnstructured>Troiano R, Siegel A (1978b) Efferent connections of the basal forebrain in the cat: the substantia innominata. Exp Neurol 61(1):198–213</BibUnstructured>
</Citation>
<Citation ID="CR258">
<BibArticle>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Ullsperger</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DY</Initials>
<FamilyName>Cramon</FamilyName>
<Particle>von</Particle>
</BibAuthorName>
<Year>2003</Year>
<ArticleTitle Language="En">Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging</ArticleTitle>
<JournalTitle>J Neurosci</JournalTitle>
<VolumeID>23</VolumeID>
<IssueID>10</IssueID>
<FirstPage>4308</FirstPage>
<LastPage>4314</LastPage>
</BibArticle>
<BibUnstructured>Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23(10):4308–4314</BibUnstructured>
</Citation>
<Citation ID="CR259">
<BibArticle>
<BibAuthorName>
<Initials>ES</Initials>
<FamilyName>Valenstein</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Nauta</FamilyName>
</BibAuthorName>
<Year>1959</Year>
<ArticleTitle Language="En">A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>113</VolumeID>
<IssueID>3</IssueID>
<FirstPage>337</FirstPage>
<LastPage>363</LastPage>
</BibArticle>
<BibUnstructured>Valenstein ES, Nauta WJ (1959) A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey. J Comp Neurol 113(3):337–363</BibUnstructured>
</Citation>
<Citation ID="CR260">
<BibArticle>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Kooy</FamilyName>
<Particle>Van Der</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>DA</Initials>
<FamilyName>Carter</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>211</VolumeID>
<IssueID>1</IssueID>
<FirstPage>15</FirstPage>
<LastPage>36</LastPage>
</BibArticle>
<BibUnstructured>Van Der Kooy D, Carter DA (1981) The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat. Brain Res 211(1):15–36</BibUnstructured>
</Citation>
<Citation ID="CR261">
<BibArticle>
<BibAuthorName>
<Initials>AJLC</Initials>
<FamilyName>Gehuchten</FamilyName>
<Particle>Van</Particle>
</BibAuthorName>
<Year>1894</Year>
<NoArticleTitle/>
<JournalTitle>Contribution à l'étude du Système nerveux des téléostéens</JournalTitle>
<VolumeID>10</VolumeID>
<FirstPage>255</FirstPage>
<LastPage>295</LastPage>
</BibArticle>
<BibUnstructured>Van Gehuchten AJLC (1894) Contribution à l'étude du Système nerveux des téléostéens 10:255–295</BibUnstructured>
</Citation>
<Citation ID="CR262">
<BibArticle>
<BibAuthorName>
<Initials>V</Initials>
<FamilyName>Varga</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Kocsis</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Sharp</FamilyName>
</BibAuthorName>
<Year>2003</Year>
<ArticleTitle Language="En">Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus</ArticleTitle>
<JournalTitle>Eur J Neurosci</JournalTitle>
<VolumeID>17</VolumeID>
<IssueID>2</IssueID>
<FirstPage>280</FirstPage>
<LastPage>286</LastPage>
</BibArticle>
<BibUnstructured>Varga V, Kocsis B, Sharp T (2003) Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus. Eur J Neurosci 17(2):280–286</BibUnstructured>
</Citation>
<Citation ID="CR263">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Vertes</FamilyName>
</BibAuthorName>
<Year>2002</Year>
<ArticleTitle Language="En">Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>442</VolumeID>
<IssueID>2</IssueID>
<FirstPage>163</FirstPage>
<LastPage>187</LastPage>
</BibArticle>
<BibUnstructured>Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442(2):163–187</BibUnstructured>
</Citation>
<Citation ID="CR264">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Vertes</FamilyName>
</BibAuthorName>
<Year>2004</Year>
<ArticleTitle Language="En">Differential projections of the infralimbic and prelimbic cortex in the rat</ArticleTitle>
<JournalTitle>Synapse</JournalTitle>
<VolumeID>51</VolumeID>
<IssueID>1</IssueID>
<FirstPage>32</FirstPage>
<LastPage>58</LastPage>
</BibArticle>
<BibUnstructured>Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58</BibUnstructured>
</Citation>
<Citation ID="CR265">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Vertes</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>WJ</Initials>
<FamilyName>Fortin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AM</Initials>
<FamilyName>Crane</FamilyName>
</BibAuthorName>
<Year>1999</Year>
<ArticleTitle Language="En">Projections of the median raphe nucleus in the rat</ArticleTitle>
<JournalTitle>Journal of Comparative Neurology</JournalTitle>
<VolumeID>407</VolumeID>
<IssueID>4</IssueID>
<FirstPage>555</FirstPage>
<LastPage>582</LastPage>
</BibArticle>
<BibUnstructured>Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. Journal of Comparative Neurology 407(4):555–582</BibUnstructured>
</Citation>
<Citation ID="CR266">
<BibArticle>
<BibAuthorName>
<Initials>RP</Initials>
<FamilyName>Vertes</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>GF</Initials>
<FamilyName>Martin</FamilyName>
</BibAuthorName>
<Year>1988</Year>
<ArticleTitle Language="En">Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>275</VolumeID>
<IssueID>4</IssueID>
<FirstPage>511</FirstPage>
<LastPage>541</LastPage>
</BibArticle>
<BibUnstructured>Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275(4):511–541</BibUnstructured>
</Citation>
<Citation ID="CR267">
<BibUnstructured>Vesalius A (1543) Andreae Vesalii de humani corporis fabrica libri septem. ex officina Joannis Oporini, Basileæ</BibUnstructured>
</Citation>
<Citation ID="CR268">
<BibArticle>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Vincent</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Kimura</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>McGeer</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">A histochemical study of GABA-transaminase in the efferents of the pallidum</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>241</VolumeID>
<IssueID>1</IssueID>
<FirstPage>162</FirstPage>
<LastPage>165</LastPage>
</BibArticle>
<BibUnstructured>Vincent S, Kimura H, McGeer E (1982) A histochemical study of GABA-transaminase in the efferents of the pallidum. Brain Res 241(1):162–165</BibUnstructured>
</Citation>
<Citation ID="CR269">
<BibArticle>
<BibAuthorName>
<Initials>SR</Initials>
<FamilyName>Vincent</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JC</Initials>
<FamilyName>Brown</FamilyName>
</BibAuthorName>
<Year>1986</Year>
<ArticleTitle Language="En">Somatostatin immunoreactivity in the entopeduncular projection to the lateral habenula in the rat</ArticleTitle>
<JournalTitle>Neurosci Lett</JournalTitle>
<VolumeID>68</VolumeID>
<IssueID>2</IssueID>
<FirstPage>160</FirstPage>
<LastPage>164</LastPage>
</BibArticle>
<BibUnstructured>Vincent SR, Brown JC (1986) Somatostatin immunoreactivity in the entopeduncular projection to the lateral habenula in the rat. Neurosci Lett 68(2):160–164</BibUnstructured>
</Citation>
<Citation ID="CR270">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Viswanath</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AQ</Initials>
<FamilyName>Carter</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PR</Initials>
<FamilyName>Baldwin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DL</Initials>
<FamilyName>Molfese</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Salas</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">The medial habenula: still neglected</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>7</VolumeID>
<FirstPage>931</FirstPage>
<BibArticleDOI>10.3389/fnhum.2013.00931</BibArticleDOI>
</BibArticle>
<BibUnstructured>Viswanath H, Carter AQ, Baldwin PR, Molfese DL, Salas R (2013) The medial habenula: still neglected. Front Hum Neurosci 7:931. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnhum.2013.00931</RefSource>
<RefTarget Address="10.3389/fnhum.2013.00931" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR271">
<BibArticle>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Bartheld</FamilyName>
<Particle>Von</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>D</Initials>
<FamilyName>Cunningham</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Rubel</FamilyName>
</BibAuthorName>
<Year>1990</Year>
<ArticleTitle Language="En">Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis</ArticleTitle>
<JournalTitle>J Histochem Cytochem</JournalTitle>
<VolumeID>38</VolumeID>
<IssueID>5</IssueID>
<FirstPage>725</FirstPage>
<LastPage>733</LastPage>
</BibArticle>
<BibUnstructured>Von Bartheld C, Cunningham D, Rubel E (1990) Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J Histochem Cytochem 38(5):725–733</BibUnstructured>
</Citation>
<Citation ID="CR272">
<BibArticle>
<BibAuthorName>
<Initials>CS</Initials>
<FamilyName>Bartheld</FamilyName>
<Particle>von</Particle>
</BibAuthorName>
<BibAuthorName>
<Initials>DL</Initials>
<FamilyName>Meyer</FamilyName>
</BibAuthorName>
<Year>1990</Year>
<ArticleTitle Language="En">Paraventricular organ of the lungfish <Emphasis Type="Italic">Protopterus dolloi</Emphasis>: morphology and projections of CSF-contacting neurons</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>297</VolumeID>
<IssueID>3</IssueID>
<FirstPage>410</FirstPage>
<LastPage>434</LastPage>
</BibArticle>
<BibUnstructured>von Bartheld CS, Meyer DL (1990) Paraventricular organ of the lungfish <Emphasis Type="Italic">Protopterus dolloi</Emphasis>: morphology and projections of CSF-contacting neurons. J Comp Neurol 297(3):410–434</BibUnstructured>
</Citation>
<Citation ID="CR273">
<BibArticle>
<BibAuthorName>
<Initials>ML</Initials>
<FamilyName>Wallace</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Saunders</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KW</Initials>
<FamilyName>Huang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AC</Initials>
<FamilyName>Philson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>M</Initials>
<FamilyName>Goldman</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>EZ</Initials>
<FamilyName>Macosko</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SA</Initials>
<FamilyName>McCarroll</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>BL</Initials>
<FamilyName>Sabatini</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia</ArticleTitle>
<JournalTitle>Neuron</JournalTitle>
<VolumeID>94</VolumeID>
<IssueID>1</IssueID>
<FirstPage>138</FirstPage>
<LastPage>152. e135</LastPage>
</BibArticle>
<BibUnstructured>Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, McCarroll SA, Sabatini BL (2017) Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94(1):138–152. e135</BibUnstructured>
</Citation>
<Citation ID="CR274">
<BibArticle>
<BibAuthorName>
<Initials>D-G</Initials>
<FamilyName>Wang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Gong</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Luo</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>T-L</Initials>
<FamilyName>Xu</FamilyName>
</BibAuthorName>
<Year>2006</Year>
<ArticleTitle Language="En">Absence of GABA type A signaling in adult medial habenular neurons</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>141</VolumeID>
<IssueID>1</IssueID>
<FirstPage>133</FirstPage>
<LastPage>141</LastPage>
</BibArticle>
<BibUnstructured>Wang D-G, Gong N, Luo B, Xu T-L (2006) Absence of GABA type A signaling in adult medial habenular neurons. Neuroscience 141(1):133–141</BibUnstructured>
</Citation>
<Citation ID="CR275">
<BibBook>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Watson</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Paxinos</FamilyName>
</BibAuthorName>
<Year>1986</Year>
<BookTitle>The rat brain in stereotaxic coordinates</BookTitle>
<PublisherName>Academic press</PublisherName>
<PublisherLocation>San Diego</PublisherLocation>
</BibBook>
<BibUnstructured>Watson C, Paxinos G (1986) The rat brain in stereotaxic coordinates. Academic press, San Diego</BibUnstructured>
</Citation>
<Citation ID="CR276">
<BibArticle>
<BibAuthorName>
<Initials>KL</Initials>
<FamilyName>Weller</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DA</Initials>
<FamilyName>Smith</FamilyName>
</BibAuthorName>
<Year>1982</Year>
<ArticleTitle Language="En">Afferent connections to the bed nucleus of the stria terminalis</ArticleTitle>
<JournalTitle>Brain Res</JournalTitle>
<VolumeID>232</VolumeID>
<IssueID>2</IssueID>
<FirstPage>255</FirstPage>
<LastPage>270</LastPage>
</BibArticle>
<BibUnstructured>Weller KL, Smith DA (1982) Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232(2):255–270</BibUnstructured>
</Citation>
<Citation ID="CR277">
<BibUnstructured>Wenzel JaW, Wenzel C (1812) penitiori structura cerebri hominis et brutorum. Tubingae</BibUnstructured>
</Citation>
<Citation ID="CR278">
<BibArticle>
<BibAuthorName>
<Initials>G</Initials>
<FamilyName>Wolf</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Sutin</FamilyName>
</BibAuthorName>
<Year>1966</Year>
<ArticleTitle Language="En">Fiber degeneration after lateral hypothalamic lesions in the rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>127</VolumeID>
<IssueID>2</IssueID>
<FirstPage>137</FirstPage>
<LastPage>156</LastPage>
<BibArticleDOI>10.1002/cne.901270202</BibArticleDOI>
</BibArticle>
<BibUnstructured>Wolf G, Sutin J (1966) Fiber degeneration after lateral hypothalamic lesions in the rat. J Comp Neurol 127(2):137–156. <ExternalRef>
<RefSource>https://doi.org/10.1002/cne.901270202</RefSource>
<RefTarget Address="10.1002/cne.901270202" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR279">
<BibArticle>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Wree</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Zilles</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Schleicher</FamilyName>
</BibAuthorName>
<Year>1981</Year>
<ArticleTitle Language="En">Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis</ArticleTitle>
<JournalTitle>Anat Embryol</JournalTitle>
<VolumeID>161</VolumeID>
<IssueID>4</IssueID>
<FirstPage>419</FirstPage>
<LastPage>431</LastPage>
</BibArticle>
<BibUnstructured>Wree A, Zilles K, Schleicher A (1981) Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis. Anat Embryol 161(4):419–431</BibUnstructured>
</Citation>
<Citation ID="CR280">
<BibArticle>
<BibAuthorName>
<Initials>T</Initials>
<FamilyName>Yamadori</FamilyName>
</BibAuthorName>
<Year>1969</Year>
<ArticleTitle Language="En">Efferent fibers of the habenula and stria medullaris thalami in rats</ArticleTitle>
<JournalTitle>Exp Neurol</JournalTitle>
<VolumeID>25</VolumeID>
<IssueID>4</IssueID>
<FirstPage>541</FirstPage>
<LastPage>558</LastPage>
</BibArticle>
<BibUnstructured>Yamadori T (1969) Efferent fibers of the habenula and stria medullaris thalami in rats. Exp Neurol 25(4):541–558</BibUnstructured>
</Citation>
<Citation ID="CR281">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Yamaguchi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Goto</FamilyName>
</BibAuthorName>
<Year>2008</Year>
<ArticleTitle Language="En">Development of the human parvocellular red nucleus</ArticleTitle>
<JournalTitle>Dev Neurosci</JournalTitle>
<VolumeID>30</VolumeID>
<IssueID>5</IssueID>
<FirstPage>325</FirstPage>
<LastPage>330</LastPage>
</BibArticle>
<BibUnstructured>Yamaguchi K, Goto N (2008) Development of the human parvocellular red nucleus. Dev Neurosci 30(5):325–330</BibUnstructured>
</Citation>
<Citation ID="CR282">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Yañez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Anadon</FamilyName>
</BibAuthorName>
<Year>1994</Year>
<ArticleTitle Language="En">Afferent and efferent connections of the habenula in the larval sea lamprey (<Emphasis Type="Italic">Petromyzon marinus</Emphasis> L): an experimental study</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>345</VolumeID>
<IssueID>1</IssueID>
<FirstPage>148</FirstPage>
<LastPage>160</LastPage>
</BibArticle>
<BibUnstructured>Yañez J, Anadon R (1994) Afferent and efferent connections of the habenula in the larval sea lamprey (<Emphasis Type="Italic">Petromyzon marinus</Emphasis> L): an experimental study. J Comp Neurol 345(1):148–160</BibUnstructured>
</Citation>
<Citation ID="CR283">
<BibArticle>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Yañez</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Anadón</FamilyName>
</BibAuthorName>
<Year>1996</Year>
<ArticleTitle Language="En">Afferent and efferent connections of the habenula in the rainbow trout (<Emphasis Type="Italic">Oncorhynchus mykiss</Emphasis>): an indocarbocyanine dye (DiI) study</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>372</VolumeID>
<IssueID>4</IssueID>
<FirstPage>529</FirstPage>
<LastPage>543</LastPage>
</BibArticle>
<BibUnstructured>Yañez J, Anadón R (1996) Afferent and efferent connections of the habenula in the rainbow trout (<Emphasis Type="Italic">Oncorhynchus mykiss</Emphasis>): an indocarbocyanine dye (DiI) study. J Comp Neurol 372(4):529–543</BibUnstructured>
</Citation>
<Citation ID="CR284">
<BibArticle>
<BibAuthorName>
<Initials>N</Initials>
<FamilyName>Yang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KD</Initials>
<FamilyName>Anapindi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>SS</Initials>
<FamilyName>Rubakhin</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>P</Initials>
<FamilyName>Wei</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Q</Initials>
<FamilyName>Yu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Li</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PJ</Initials>
<FamilyName>Kenny</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>JV</Initials>
<FamilyName>Sweedler</FamilyName>
</BibAuthorName>
<Year>2018</Year>
<ArticleTitle Language="En">Neuropeptidomics of the rat habenular nuclei</ArticleTitle>
<JournalTitle>J Proteome Res</JournalTitle>
<VolumeID>17</VolumeID>
<IssueID>4</IssueID>
<FirstPage>1463</FirstPage>
<LastPage>1473</LastPage>
</BibArticle>
<BibUnstructured>Yang N, Anapindi KD, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV (2018) Neuropeptidomics of the rat habenular nuclei. J Proteome Res 17(4):1463–1473</BibUnstructured>
</Citation>
<Citation ID="CR285">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Yetnikoff</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AY</Initials>
<FamilyName>Cheng</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>HN</Initials>
<FamilyName>Lavezzi</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>KP</Initials>
<FamilyName>Parsley</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>DS</Initials>
<FamilyName>Zahm</FamilyName>
</BibAuthorName>
<Year>2015</Year>
<ArticleTitle Language="En">Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>523</VolumeID>
<IssueID>16</IssueID>
<FirstPage>2426</FirstPage>
<LastPage>2456</LastPage>
</BibArticle>
<BibUnstructured>Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523(16):2426–2456</BibUnstructured>
</Citation>
<Citation ID="CR286">
<BibArticle>
<BibAuthorName>
<Initials>MW</Initials>
<FamilyName>Young</FamilyName>
</BibAuthorName>
<Year>1936</Year>
<ArticleTitle Language="En">The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (<Emphasis Type="Italic">Lepus cuniculus</Emphasis>)</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>65</VolumeID>
<IssueID>1</IssueID>
<FirstPage>295</FirstPage>
<LastPage>401</LastPage>
</BibArticle>
<BibUnstructured>Young MW (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (<Emphasis Type="Italic">Lepus cuniculus</Emphasis>). J Comp Neurol 65(1):295–401</BibUnstructured>
</Citation>
<Citation ID="CR287">
<BibArticle>
<BibAuthorName>
<Initials>DS</Initials>
<FamilyName>Zahm</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>E</Initials>
<FamilyName>Williams</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>C</Initials>
<FamilyName>Wohltmann</FamilyName>
</BibAuthorName>
<Year>1996</Year>
<ArticleTitle Language="En">Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain</ArticleTitle>
<JournalTitle>J Comp Neurol</JournalTitle>
<VolumeID>364</VolumeID>
<IssueID>2</IssueID>
<FirstPage>340</FirstPage>
<LastPage>362</LastPage>
</BibArticle>
<BibUnstructured>Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364(2):340–362</BibUnstructured>
</Citation>
<Citation ID="CR288">
<BibArticle>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Zhang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Wang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Luan</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>S</Initials>
<FamilyName>Yang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>Z</Initials>
<FamilyName>Wang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>J</Initials>
<FamilyName>Wang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Zhao</FamilyName>
</BibAuthorName>
<Year>2017</Year>
<ArticleTitle Language="En">Altered volume and functional connectivity of the habenula in schizophrenia</ArticleTitle>
<JournalTitle>Front Hum Neurosci</JournalTitle>
<VolumeID>11</VolumeID>
<FirstPage>636</FirstPage>
<BibArticleDOI>10.3389/fnhum.2017.00636</BibArticleDOI>
</BibArticle>
<BibUnstructured>Zhang L, Wang H, Luan S, Yang S, Wang Z, Wang J, Zhao H (2017) Altered volume and functional connectivity of the habenula in schizophrenia. Front Hum Neurosci 11:636. <ExternalRef>
<RefSource>https://doi.org/10.3389/fnhum.2017.00636</RefSource>
<RefTarget Address="10.3389/fnhum.2017.00636" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR289">
<BibArticle>
<BibAuthorName>
<Initials>H</Initials>
<FamilyName>Zhao</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>B</Initials>
<FamilyName>Rusak</FamilyName>
</BibAuthorName>
<Year>2005</Year>
<ArticleTitle Language="En">Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro</ArticleTitle>
<JournalTitle>Neuroscience</JournalTitle>
<VolumeID>132</VolumeID>
<IssueID>2</IssueID>
<FirstPage>519</FirstPage>
<LastPage>528</LastPage>
<BibArticleDOI>10.1016/j.neuroscience.2005.01.012</BibArticleDOI>
</BibArticle>
<BibUnstructured>Zhao H, Rusak B (2005) Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience 132(2):519–528. <ExternalRef>
<RefSource>https://doi.org/10.1016/j.neuroscience.2005.01.012</RefSource>
<RefTarget Address="10.1016/j.neuroscience.2005.01.012" TargetType="DOI"/>
</ExternalRef></BibUnstructured>
</Citation>
<Citation ID="CR290">
<BibArticle>
<BibAuthorName>
<Initials>R</Initials>
<FamilyName>Zhao-Shea</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>L</Initials>
<FamilyName>Liu</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>X</Initials>
<FamilyName>Pang</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>PD</Initials>
<FamilyName>Gardner</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>AR</Initials>
<FamilyName>Tapper</FamilyName>
</BibAuthorName>
<Year>2013</Year>
<ArticleTitle Language="En">Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms</ArticleTitle>
<JournalTitle>Curr Biol</JournalTitle>
<VolumeID>23</VolumeID>
<IssueID>23</IssueID>
<FirstPage>2327</FirstPage>
<LastPage>2335</LastPage>
</BibArticle>
<BibUnstructured>Zhao-Shea R, Liu L, Pang X, Gardner PD, Tapper AR (2013) Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr Biol 23(23):2327–2335</BibUnstructured>
</Citation>
<Citation ID="CR291">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Zilles</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>A</Initials>
<FamilyName>Schleicher</FamilyName>
</BibAuthorName>
<BibAuthorName>
<Initials>F</Initials>
<FamilyName>Wingert</FamilyName>
</BibAuthorName>
<Year>1976</Year>
<ArticleTitle Language="En">Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series III Nucleus interpe-uncularis</ArticleTitle>
<JournalTitle>J fur Hirnforschung</JournalTitle>
<VolumeID>17</VolumeID>
<IssueID>1</IssueID>
<FirstPage>21</FirstPage>
<LastPage>29</LastPage>
</BibArticle>
<BibUnstructured>Zilles K, Schleicher A, Wingert F (1976) Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series III Nucleus interpe-uncularis. J fur Hirnforschung 17(1):21–29</BibUnstructured>
</Citation>
<Citation ID="CR292">
<BibArticle>
<BibAuthorName>
<Initials>K</Initials>
<FamilyName>Zyo</FamilyName>
</BibAuthorName>
<Year>1963</Year>
<ArticleTitle Language="En">Experimental studies on the medial forebrain bundle, medial longitudinal fasciculus and supraoptic decussations in the rabbit</ArticleTitle>
<JournalTitle>Med J Osaka Univ</JournalTitle>
<VolumeID>13</VolumeID>
<IssueID>2</IssueID>
<FirstPage>193</FirstPage>
<LastPage>239</LastPage>
</BibArticle>
<BibUnstructured>Zyo K (1963) Experimental studies on the medial forebrain bundle, medial longitudinal fasciculus and supraoptic decussations in the rabbit. Med J Osaka Univ 13(2):193–239</BibUnstructured>
</Citation>
</Bibliography>
<!-- Query ID="Q5" Text="AUTHOR: As References Quina et al., 2015a and Quina et al., 2015b are same, we have deleted the duplicate reference and renumbered accordingly. Please check and confirm." -->
</ArticleBackmatter>
</Article>
    (1-1/1)